RESOLUTION NO. 2015-_____710

Agnat

A RESOLUTION APPROVING AN AGREEMENT FOR PROFESSIONAL ARCHITECTURAL/ENGINEERING CONSULTING SERVICES IN THE AMOUNT OF \$675,000 BETWEEN THE CITY OF TAMPA AND PROGRESSIVE ENGINEERING & CONSTRUCTION, INC. IN CONNECTION WITH CONTRACT NO. 15-D-00028; HANNA AVENUE SITE REMEDIATION; AUTHORIZING THE MAYOR OF THE CITY OF TAMPA TO EXECUTE SAME; PROVIDING AN EFFECTIVE DATE.

WHEREAS, via the competitive selection process in accordance with Florida Statutes Section 287.055, Consultants' Competitive Negotiation Act and consistent with Federal procurement policies, the City of Tampa (CITY) selected Progressive Engineering & Construction, Inc. as CONSULTANT to provide Professional Architectural/Engineering Consulting Services in connection with Contract 15-D-00028; Hanna Avenue Site Remediation, (PROJECT) as detailed in the Agreement for Consultant Services (AGREEMENT); and

WHEREAS, the CITY desires to enter into an agreement with the CONSULTANT to provide certain Professional Architectural/Engineering Consulting Services; and

WHEREAS, it is in the best interest of the City of Tampa to enter into this AGREEMENT.

NOW, THEREFORE,

BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF TAMPA, FLORIDA, THAT:

Section 1. The Agreement for Consultant Services between the City of Tampa and Progressive Engineering & Construction, Inc. in connection with Contract 15-D-00028; Hanna Avenue Site Remediation as detailed in said AGREEMENT, a copy of which is attached hereto and made part hereof, is authorized and approved in its entirety or in substantially similar form.

Section 2. The Mayor of the City of Tampa is authorized and empowered to execute, and the City Clerk to attest and affix the official seal of the City of Tampa to, said AGREEMENT on behalf of the City of Tampa.

Section 3. Funding for award of a contract for Professional Architectural/Engineering Services is provided in the amount of \$675,000 for the Logistics and Asset Management Department using debt proceeds.

Section 4. The other proper officers of the City of Tampa are authorized to do all things necessary and proper in order to carry out and make effective the provisions of this Resolution, which shall take effect immediately upon its adoption.

PASSED AND ADOPTED by the City Council of the City of Tampa, Florida, on

- Knowles

Chairman/Chairman Pro Tent, City Council

ATTEST:

Approved as to Legal Sufficiency by Rachel S. Peterkin, Assistant City Attorney

1/2015-35

AGREEMENT FOR CONSULTANT SERVICES"

THIS AGREEMENT."o cf g"cpf "gpvgtgf "kpvq"cv"Vco r c. "Hrqtkf c."y ku"aaaaa" f c { "qh"aaaaaaaaaaaaaaaaa."42aa." d { "cpf "dgw ggp" y g"EKV["QH"VCO RC."c"o wpkekr cn'eqtr qtcvkqp"qh" y g"Ucvg"qh" Hrqtkf c."j gtgkpchvgt "tghgttgf "vq"cu" \$EKV[\$."y g"cf f tguu"qh" y j kej "ku"537 "Gcuv" Mgppgf { "Dqwrgxctf." Vco r c. "Hrqtkf c"55824."cpf "Rtqi tguukxg" Gpi kpggtkpi " " Eqpuntvevkqp." Kpe0" c"eqtr qtcvkqp" ej ctvgtgf "cpf "gzknvkpi "wpf gt" y g"rcy u"qh" y g"Ucvg"qh" Hrqtkf c." j gtgkpchvgt "tghgttgf "vq"cu" \$EQP UWNVCP V\$." y g"cf f tguu"qh" y j kej "ku"5; 34"Y 0J wo r j tg{ "Uttggv" Vco r c. HN."558360"

WITNESSETH:"

WHEREAS, yj g" EKV[" f guktgu" vq" gpi ci g" yj g" EQP UWNVCP V" vq" r gthqto " egtvclp" Rtqhguulqpcn' Ctej kgewtcnlGpi kpggtkpi "Eqpuvnlqpi "Ugtxkegu'r gtvkpgpv'vq'uwej "y qtm'y j lej "uj cm'dg"tghgttgf "vq"cu'37/F/2224: ="J cppc" Cxgpwg"Ukg"Tgo gf kcvlqp"öRTQLGEVö"kp"ceeqtf cpeg"y ksj "vj ku'Ci tggo gpv="cpf"

WHEREAS," yi g''EQP UWNVCP V''f gultgu''vq''r tqxlf g''uwej ''Rtqhguulqpcn''Ctej ksgewtcnlGpi kpggtkpi ''Eqpuwnkpi '' Ugtxlegu'kp''ceeqtf cpeg'y kji ''y ku''Ci tggo gpv0''

NOW, THEREFORE, 'kp''eqpulf gtcvkqp''qh''y g'o wwcn'eqxgpcpvu. 'r tqo kugu. 'tgrtgugpvcvkqpu''cpf 'eqpulf gtcvkqpu'' vq''dg''ngrv''r gthqto gf ''cpf 'r claf. 'y g'r ctvkgu'j gtgvq''ci tgg'hqt''y go ugnxgu. 'y gkt''uweeguuqtu''cpf ''cuuki pu. ''cu'hqnqy u<''

I. GENERAL SCOPE OF THIS AGREEMENT"

- "C0" Vj g"tgrevlqpuj kr "qh" vj g"EQP UWNVCP V" vq" vj g"EW["y kn" dg" vj cv" qh" cp" kpf gr gpf gpv" Rtqhguulqpcn" Ctej kgewtcnlGpi kpggtkpi "Eqpuwncpv" hqt" vj g"RTQLGEV="cpf" vj g"EQP UWNVCP V" uj cm'r tqxkf g" vj g"r tqhguulqpcn' cpf" vgej plecni ugtxkegu" tgs wktgf " vpf gt" vj ku" Ci tggo gpv" kp" ceeqtf cpeg" y kj " ceegr vcdrg" r tcevkegu" cpf " gvj kecni uvcpf ctf u0" õEQP UWNVCP Vö" ku" uqo gvko gu" tghgttgf " vq" cu" õGP I kP GGT ö" kp" Gz j kdk/" C0" õEkV[ö" ku" uqo gvko gu" tghgttgf " vq" cu" õENKGP Vö" qt "õerkgpvö" kp" Gz j kdk/" C0"
 - D0' Vj g'tæqr g'qh'tugtxlægu'\q'dg'r tqxkf gf 'ku'lpf lecvgf 'lp'Exhibit A0'

II. DATA AND SERVICES TO BE PROVIDED BY THE CITY

Vjg'EKV['ujcm'rtqxkfg<'

"

C0 Cxckrcdrg'r rcpu'cpf 'ur gekhlecvkqpu'qh'gzkurkpi 'eqpurt wevkqp0'

III. PERIOD OF SERVICE"

- " C0" Vj g" EQP UWNVCP V" uj cm² dgi kp" y qtm² r tqo r vn{" chygt" tgegkr v" qh² c" hwm{ " gz gewyf " eqr { " qh² vj g" Ci tggo gpv'cpf "c"P qvkeg" vq"Rtqeggf 0" Vj g"Ci tggo gpv'uj cm² tgo ckp"kp"hqteg" vpvkri'y g"eqo r rgvkqp"qh² cm² eqpuvt wevkqp" cpf " tgrcvgf 'r quv'eqpuvt wevkqp" cevkx kkkgu'cu'f guetkdgf 'kp'Czj kdkv'C'hqt'y g'Rtqlgev0'
- " D0' Vj g"EQP UWNVCP Vøu"ugtxkegu"ecngf "hqt"wpf gt"vj ku"Ci tggo gpv"uj cm'dg"eqo r ngvgf "r tqxkf gf "vj cv."kh" vj g"EQP UWNVCP V u"ugtxkegu"ctg"f gnc { gf "hqt"tgcuqpu"dg { qpf "vj g"EQP UWNVCP V u"eqpvtqn"vj g"vko g"qh"r gthqto cpeg" uj cm'dg"cf lwwgf "cr r tqr tkcvgn{0'

IV. GENERAL CONSIDERATIONS"

"""""Tgxkugf '9/43/37"

- "C0' Cm'qtki kpcn'ungvej gu."tcekpi u."ftcy kpi u."eqo r wcvkqpu."f gwknı."f guki p"ecnewcvkqpu."ur gekhecvkqpu"cpf "qy gt"f qewo gpw"cpf "r mpu"y cv"tguwn/"htqo "y g"EQP UWNVCP Vu"ugtxkegu"wpf gt"y ku"Ci tggo gpv'uj cm'dgeqo g"cpf" tgo ckp"y g"rtqr gtv{"qh'y g"EKV["wr qp"tgegkr v'qh'r c{o gpv'd{"y g"EQP UWNVCP V"htqo "y g"EKV["hqt"ugtxkegu"tgpf gtgf" kp"eqppgevkqp"y ky "y g"r tgr ctcvkqp"qh'uckf "ungvej gu."tcekpi u."gve0""Y j gtg"uvej "f qewo gpw"ctg"tgs wktgf "q"dg"hkrgf "y ky "i qxgtpo gpvcn'ci gpekgu."y g'EQP UWNVCP V'y knihwtpkij "eqr kgu"vq"y g"EKV["wr qp"tgs wgun0'
- "D0' Vj g'EK/["cempqy ngf i gu'\j cv'\j g'o cvgtkcnı'ekgf "kp'Rctci tcr j "KX0C0'cdqxg."y j kej "ctg"r tqxkf gf "d{ "\j g" EQP UWNVCP V."ctg"pqv'kpvgpf gf "hqt"wug'kp"eqppgevkqp"y kıj "cp{"r tqlgev'qt"r wtr qug"qy gt "\j cp"\j g"r tqlgev'cpf "r wtr qug" hqt "y j kej "uwej "o cvgtkcnı'y gtg'r tgr ctgf "y kıj qw'r tkqt"y tkvgp"eqpugpv'cpf "cf cr vckqp"d{ "\j g"EQP UWNVCP V"\ij cm'dg"cv" y g'EK/[u'uqrg'tkım'cpf "\j g'EQP UWNVCP V"\ij cm'j cxg"pq'tgur qpukdktk\{ "\j gtghqt0'
- "E0' Cp{"wug"d{"yi g"EKV["qh"uwej "o cvgtkcnu"kp"eqppgevkqp"y kji "c"rtqlgev'qt"r wtr qug"qyi gt"yi cp"yi cv'hqt" y j kej "uwej "o cvgtkcnu"ctg"rtgrctgf "y kji qwv'r kqt"y tkwpp"eqpugpv'cpf "cf cr vcvkqp"d{ "yi g"EQP UWNVCP V"uj cm'dg"cv'yi g" EKV[øu'uqrg'tkum'cpf 'yi g'EQP UWNVCP V'uj cm'j cxg'pq'tgur qpukdktk/{ "qt'ikcdktk/{ "yi gtghqtg0"

V. COMPENSATION"

" Vj g'EKV[''uj cm'eqo r gpuc'g''y g'EQP UWNVCP V'hqt''y g''ugtxlegu'r gthqto gf ''y kj ''y ku''Ci tggo gpv'cp''wr ugv'hlo kv'' qh''8897.222''cu''lpf lec $^{\prime\prime}$ lec $^{\prime\prime}$ Exhibit B0'

VI. <u>PAYMENT</u>"

" Rc{o gpvu'uj cm'dg'o cf g'wrqp'rtgugpvcvkqp'qh'vj g'EQPUWNVCPV u'crrtqxgf'kpxqkeg0'''

VII. <u>RECORDS</u>"

" Tgeqtf u'hqt 'Rgtuqppgri\Gzr gpugu'uj cm'dg'ngr v'qp''c'i gpgtcm\(\) 'tgeqi pk\(\) gf 'ceeqwpvkpi 'dcuku'cpf 'uj cm'dg''cxckrcdrg'' vq''y g'EKV\[''qt''ku''cwj qtk\(\) gf 'tgr tgugpvcvkxg''cv'o wwcm\(\) ''eqpxgpkgpv'vko gu\(0\)'

Y kj "tgur gev'vq"cm'o cwgtu"eqxgtgf "d{"y kı"Ci tggo gpv."tgeqtf u'y km'dg"o cf g"cxckrcdrg"hqt"gzco kpcvkqp."cwf kv." kpur gevkqp."qt"eqr {kpi "r wtr qugu"cv'cp{"who g"f wtkpi "pqto cn'dwukpguu"j qwtu"cv'c"mecvkqp"y kyi kp"J kmudqtqwi j "Eqwpv{." Hrqtkf c"cu"qhxgp"cu"y g"EkV[."J WF."tgr tgugpvcvkxgu"qh"y g"Eqo r vtqngt"I gpgtcn'qh'y g"Wpkxgf "Uvcyu"qt"qyj gt "hgf gtcn' ci gpe{"o c{"tgcuqpcdn("tgs wltg0""EQP UWNVCP V"y knih gto kv'uco g"vq"dg"gzco kpgf "cpf "gzegtr w"qt "vtcpuetkr vlqpu"o cf g" qt"f wr nlecvgf "htqo "uvej "tgeqtf u."cpf "cwf ku"o cf g"qh"cm"eqpvtcevu."kpxqlegu."o cvgtkcnu."tgeqtf u"qh"r gtuqppgn"cpf "qh' go r m{o gpv'cpf "qyj gt "f cvc"tgrcvkpi "vq"cm'o cwgtu"eqxgtgf "d{"y ku"Ci tggo gpv0"Vj g"EkV[øu'tki j v'qh"kpur gevkqp"cpf "cwf kv" uj cm" qdvckp" nlngy kug" y kyj " tghgtgpeg" vq" cp{" cwf ku" o cf g" d{" cp{" qyj gt " ci gpe{." y j gyj gt" mecn" uvcyg" qt" hgf gtcn"} EQP UWNVCP V"uj cm'tgvckp"cm'tgeqtf u"cpf "uwr r qtvkpi "f qewo gpvcvkqp"cr r nlecdng"vq"y ku"Ci tggo gpv1'hqt"hxxg"*7+"{ gctu" htqo "yj g"f cvg"qh"eqo r ngvkqp0""Vj g"Eqpuvnxcpv'y kni'hkng"qt "cuuknv'kp"hkhpi "yj g"cppwcn'r gthqto cpeg"tgr qtv'vq"J WF."kh' cr r nlecdng0"Ki'cp{"hkki cvkqp."encho ."pgi qvcvkqp."cwf kv"o qpkxqtpi ."kpur gevkqp"qt"qyj gt "cevkqp"j cu'dggp"vcvtygf "dghqtg"yj g" gzr ktcvkqp"qh'yj g"tgs wltgf "tgeqtf "tgygpvkqp" gthqt."tgeqtf u"o wuv'dg"tgvckpgf "wpvknleqo r ngvkqp"qh'yj g"cevkqp"cpf "tguqnwkqp" qh'cmlkuwgu'y j lej "ctkug'htqo "kv"qt"yj g"gpf "qh'yj g'tgs wltgf "r gtkqf ."y j lej gxgt "ku'ncygt0'

VIII. <u>PERSONNEL</u>"

Vj g"EQP UWNVCP V"tgr tgugpvu" yʻ cv' kb'' j cu'' qt" y kni' ugewtg." cv' ku'' qy p" gzr gpug." cmi'r gtuqppgni'tgs wktgf "kp'' r gthqto kpi "vj g''ugtxkegu''wpf gt "vj ku''Ci tggo gpv0"Cmi'r gtuqppgni'gpi ci gf "kp''yj g''y qtmi'uj cmi'dg''hwm("s wcnkhgf "cpf "uj cmi'dg'' cwij qtk| gf "qt''r gto kwgf "wpf gt"Ucvg"cpf "mecni'ncy "vq"r gthqto "uwej "ugtxkegu0"P q"r gtuqp"y j q"ku''ugtxkpi "ugpvgpeg"kp"c" r gpcni'qt "eqttge-kqpcni'kpurkwwkqp"uj cmi'dg"go r mq{gf "hqt"y qtmi'wpf gt" yʻ ku''Ci tggo gpv0"Vj g"EQP UWNVCP V"hwtyj gt" egtvkhkgu"yʻ cv'cmi'qhi'kuu"go r mq{ggu"cuuki pgf "vq"ugtxg"yʻ g"EKV["j cxg"uwej "mpqy ngf i g"cpf "gzr gtkgpeg"cu''tgs wktgf "vq" r gthqto "yʻ g"f wkgu''cuuki pgf "vq"yʻ go 0"Cp{"go r mq{gg"qh'yʻ g"EQP UWNVCP V"yʻ j q."kp"yʻ g"qr kpkqp"qh'yʻ g"EKV[."ku"

kpeqo r gvgpv."qt"y j qug"eqpf wev'dgeqo gu"f gvtko gpvcn'vq"yj g"y qtm"uj cm'ko o gf kcvgn{"dg"tgo qxgf "htqo "cuuqekcvlqp" y kj "vj g"egtvckp"r tqhguukqpcn'gpi kpggtkpi "ugtxkegu'wpf gt "vj ku'Ci tggo gpv0"

IX. SUSPENSION, CANCELLATION OR ABANDONMENT"

- "Kp"ij g"gxgpv'ij g"RTQIGEV"ku'uwur gpf gf ."ecpegngf "qt"cdcpf qpgf ."ij g"EQPUWNVCP V"uj cm'dg"i kxgp"hkhxggp" *37+"f c {u"r tkqt "y tkwgp"pqvkeg"qh"uwej "cevkqp"cpf "uj cm'dg"eqo r gpucvgf "hqt"vj g"r tqhguukqpcn'ugtxkegu"r tqxkf gf "cpf" tgko dwtucdng"gzr gpugu"kpewttgf "wr "vq"vj g"f cvg"qh"uwur gpukqp."ecpegnrcvkqp"qt"cdcpf qpo gpv'kp"cp"co qwpv'o wwcm(" ci tggf "vq"d{"vj g"EKV["cpf "EQPUWNVCP V"cpf "uwr r qtvgf"d{"dcem/wr "f qewo gpvcvkqp0"
- " Wr qp" uwur gpulqp." ecpegmcvlqp" qt" cdcpf qpo gpv' j gtgqh" EQP UWNVCP V" uj cm' ko o gf kcvgn(" egcug" y qtm' j gtgwpf gt"cpf "uj cm'dg"eqo r gpucvgf "hqt"kuu'ugtxlegu"tgpf gtgf "wr "vq" y g"vko g"qh'uwej "ecpegmcvlqp"qt"vgto kpcvlqp"qp"c" s wcpwo "o gtvkv'dcuku="cpf" y g"EKV[" uj cm'j cxg"pq'hwt y gt 'hlpcpelcn'iqdrki cvlqp" vq"EQP UWNVCP V0'
- "Kp''y g'gxgpv''y g'RTQIGEV'ku'uwur gpf gf ."ecpegngf "qt "cdcpf qpgf ."'y g'EQP UWNVCP V'uj cm'f grkxgt "cm'qtki kpcn' ungvej gu "vtcekpi u."f tcy kpi u."eqo r wcvkqpu."f gvckru. "f guki p"ecnewrcvkqpu."ur gekhecvkqpu"cpf "qvj gt"f qewo gpvu"cpf "r ncpu" yi cv't guwnv'htqo "vj g'EQP UWNVCP V u'ugtxkegu'wpf gt "vj ku'Ci tggo gpvl"Vj g'chqtgo gpvkqpgf "qtki kpcn'ungvej gu. "vtcekpi u."" f tcy kpi u."eqo r wcvkqpu."f gvckru."f guki p"ecnewrcvkqpu."ur gekhecvkqpu"cpf "qvj gt"f qewo gpvu"cpf "r ncpu"uj cm'dg"y kyj qw' tguvtkevkqp"qp"hwwtg"wug"d{"vj g'EKV[0'

X. <u>TERMINATION</u>

" C0"Vgto kpckqp'hqt'Ecwug.

Vj gp"'yj g"EKV["oc{"rtqxkfg"hkxg"*7+"fc{u'ytkwgp"pqvkeg"'yjcv'yjg"eqpfwev'qh''yjg"EQPUWNVCPV"ku'uwej"'yjcv' yj g'lpvgtguvu'qhl'yj g'EKV["ctg'hkngn("vq"dg"ko r cktgf "qt"r tglwf kegf ."uvcvkpi "vj g'hcevu'wr qp"y j kej "vj g'qr kpkqp"ku'dcugf 0'Vj gp" yj g"EKV["o c{"wrqp"hkhggp" 37+"fc{u'y tkwgp"pqvkeg."cpf "cv'vj g"gpf "qh'vj g" 37+"fc{u'vgto kpcvg"vj ku'Ci tggo gpv'hqt"ecwug" *j gtgkp"õVgto kpcvkqp"Fcvgö+0'Wrqp"vjcv'vgto kpcvkqp"hqt"ecwug."vjg"EQPUWNVCPV"ujcm'dg"gpvkxrgf"vq"eqorgpucvkqp" hqt"ugtxkegu"r tqr gtn("cpf"ucvkuhcevqtkn("r gthqto gf"vj tqwi j "vj g"f cvg"qh"uwej "vgto kpcvkqp"hqt"ecwug0""J qy gxgt."pq" cmy cpeg" uj cm' dg" kpenvf gf " hqt" vgto kpcvkqp" gzr gpugu0' " " kp" vj g" gxgpv" qh" uwej " vgto kpcvkqp" hqt" ecwug." vj g" EQP UWNVCP V'uj cm'dg"gpvkrgf "vq"tgegkxg"lwuv'cpf "gs wkxcdrg"eqo r gpucvkqp"hqt"cp{"ucvkuhcevqt{"y qtm'ir gthqto gf "cu" qh'y g''Vgto kpcvkqp'F cvg="j qy gxgt."EQP UWNVCP V''uj cm'pqv'dg''eqo r gpucvgf "hqt "cp{"cpvkekr cvqt { "r tqhkxu''y cv'j cxg" pqv'dggp"gctpgf "cu"qh"yi g"f cvg"qh"yi g"Vgto kpcvkqp"F cvg0"'Cm'y qtm'ceeqo r nkuj gf "d{ "EQP UWNVCP V"r tkqt "vq"yi g" Vgto kpcklqp"F cvg"uj cm'dg"f qewo gpvgf 0'Kp"vj g"gxgpv'vj g"r tqlgev'ku"vgto kpcvgf "hqt"ecwug"r wtuwcpv'vq"vj ku"Ctvkerg."vj g" EQP UWNVCP V"uj cm'f grkxgt"cm'qtki kpcn'ungvej gu." vtcekpi u."f tcy kpi u."eqo r wcxkqpu."f gvktu."f guki p"ecrewrcxkqpu." ur gekhecvkqpu"cpf "qyj gt"f qewo gpw"cpf "r rcpu"yj cvtguwn/htqo "yj g"EQP UWNVCP V u"ugtxkegu"wpf gt"yj ku"Ci tggo gpv0Vj g" chątgo gpwłąpgf "qtki kpcni'ungwej gu." wteekpi u." f tey kpi u." eqo r wewkąpu." f gwku." f guki p"eenewrewkąpu." ur gekhleewkąpu "cpf" qyi gt "f qewo gpwi'cpf "r repu'uj cm'dg"y kij qwi'tguxtkevkqp"qp "hwwtg"wug"d { "yi g"EKV[0"P qw kij uvcpf kpi "yi g"cdqxg"qt "cp { " ugevlqp"j gtglxp"vq"vj g"eqpvtct{."EQPUWNVCPV"uj cm"pqv"dg"tgrlxxgf "qh"rlxcdkrlxv{"vq"vj g"EKV["hqt"f co ci gu"uwuxclxpgf" d{"yj g'EW["d{"xktwg"qh"cp{"dtgcej "qh"yj g'Eqpvtcev"d{"EQPUWNVCP V0"

D0Vgto kpcvkqp'hqt'Eqpxgpkgpeg0""

Vj g"EW["o c{"tgf weg"yj g"ueqr g"qh"y qtm'qt"yto kpcvg"y qtm'wpf gt"yj ku"Ci tggo gpv'qt"co gpf o gpv'vq"yj ku"Ci tggo gpv'y kij qw"ecwug=kp"yj g"gxgpv'qh'uwej "ueqr g"tgf wevkqp"qt"yto kpcvkqp"qyj gt"yj cp"hqt"ecwug."yj g"EKV["uj cm' eqo r gpucvg"yj g"EQP UWNVCP V"hqt"ugtxkegu"r tqr gtn("r gthqto gf "yj tqwi j "yj g"f cvg"qh"uwej "tgf wevkqp"kp"ueqr g"qt" ygto kpcvkqp."yj kej "f cvg"uj cm'dg"hdzgf "kp"y tkwgp"pqvkeg"htqo "yj g"EKV["cpf "yj kej "f cvg"uj cm'dg"pqv'uqqpgt"yj cp" hkhzgp"*37+f"c {u'chygt "pqvkeg0P qw kyj uvcpf kpi "uwej "yto kpcvkqp"qt"tgf wevkqp"kp"ueqr g."yj g"EKV["uj cm'dg"gpvkxgf" "q" tgegkxg"htqo "yj g"EQP UWNVCP V"wr qp"tgs wgw'cp{"cpf "cmlvphqto cvkqp"tgrevgf "q"yj g"RTQLGEV"cpf "yj g"EKV["uj cm' r tgugtxg"cpf "r tqvgev'cm'uwej "kphqto cvkqp"cpf "cuuxtg"tgcf {"ceeguu"yj gtgvq"d{"yj g"RQP UWNVCP V"kp"eqppgevkqp" y kyj "tguqnwkqp"qh"yj g"co qwpv'f wg"vq"yj g"Hkto 0'Vj g"EKV[."cv'kv'qy p"f kuetgvkqp."uj cm'dg"gpvkxrgf "vq"f ktgev'yj g" EQP UWNVCP V"vq"vgto kpcvg"cp{"qt"cm"yj g"EQP UWNVCP Vøu"uwdeqpvtcevu"qt"uwdeqpvxxhpi "ci tggo gpvt0"Kp"yj g" gxgpv'yj g"r tqlgev'ku'vgto kpcvgf "hqt"eqpxgpkgpeg"r wtuvcpv'vq"yj ku'Ctvkerg."yj g"EQP UWNVCP V"uj cm'f grkxgt "cm'qtki kpcn' umgvej gu. "tcekpi u."f tcy kpi u."eqo r wcvkqpu."f gvcknu."f guki p"ecrewrcvkqpu."ur gekhecvkqpu"cpf "qvj gt"f qewo gpvu"cpf "r rcpu" yj cv'tguwn/htqo "yj g"EQP UWNVCP Vu'ugtxkegu'wpf gt"yj kn'Ci tggo gpvt0"Vj g"chqtgo gpvkqpgf "qtki kpcn'umgvej gu."tcekpi u."f tcy kpi u."eqo r wcvkqpu."f gvcknu."f guki p"ecrewrcvkqpu."ur gekhecvkqpu"cpf "qvj gt"f qewo gpvu"cpf "r rcpu" yi cv'tguwn/htqo "yj g"EKV[0""

XI. <u>INSURANCE</u>"

" Vj g'EQP UWNVCP V. "cv'ku"qy p"equv'cpf "gzr gpug. "uj cm'ghtgev'cpf "o ckpvckp"cv'cm'vko gu'f wtkpi "vj g'httg"qh'vj ku" Ci tggo gpv'kpuwtcpeg. 'kp'ceeqtf cpeg'y kyj 'vj cv'kpf kecvgf 'kp'Exhibit C."

XIIO <u>INTERESTS OF MEMBERS OF THE CITY</u>"

" P q"o go dgt"qh"y g"i qxgtpkpi "dqf {"qh"y g"EKV["cpf "pq"qy gt"qhhlegt."go r mq{gg."qt"ci gpv"qh"y g"EKV["y j q" gzgtekug"cp{"hwpevkqpu"qt"tgur qpukdkkskgu"kp"eqppgevkqp"y kj "y g"ectt{kpi "qw"qh"y g"RTQLGEV"vq"y j kej "y ku"Ci tggo gpv" r gtvckpu"uj cm'j cxg"cp{"r gtuqpcnlkpvgtguv."f ktgev'qt"kpf ktgev."kp"y ku"Ci tggo gpv0"

XIII. INTEREST OF THE CONSULTANT"

- "Vj g"EQP UWNVCP V"eqxgpcpvu" y cv'lk'r tgugpvn("j cu"pq"lpvgtguv"cpf "uj cm"pqv'ces wktg"cp{"lpvgtguv."f ktgev'qt" lpf ktgev."kp"cp{"r tqlgev'vq"y j kej "y ku"Ci tggo gpv'r gtvckpu"qt"cp{"qy gt"lpvgtguv"y j kej "y qwrf "eqphrkev'lp"cp{"o cppgt"qt" f gi tgg"y kj "kwu"r gthqto cpeg"qh'cp{"eqpvtcevgf "ugtxkeg"j gtgwpf gt0""Vj g"EQP UWNVCP V"hwt y gt "eqxgpcpvu"y cv'lp"y g" r gthqto cpeg"qh'y ku'Ci tggo gpv'pq'r gtuqp'j cxkpi 'uwej 'kpvgtguv'uj cm'dg"go r m{gf 0'
- $\label{eq:control_co$
- "Vj g'EQP UWNVCP V'uj cmi'f kuenqug''cp {"erkgpwi'j cv'o c {"gkj gt"eqphrlev'y kj "qt"chhgev'kwi'kpf gr gpf gpv'lwf i o gpv' y j gp"r gthqto kpi "cp {"y qtmi'hqt"yj g"Ekx{"qhi"Vco r c"eqxgtgf "d {"yj ku"Ci tggo gpv0'Hcknwtg"qhi"yj g"EQP UWNVCP V"vq" f kuenqug''y g''cdqxg''r tqhguukqpcni'eqphrlev'qhi'kpvgtguv'o c {"tguwnv'kp"vgto kpcvkqp"qhi'yj ku'Ci tggo gpv'r wtuwcpv'vq''Ctvkerg'Z "qhi' yi ku'Ci tggo gpv'rpf "o c {"tgs wktg''yj g''tgwtp"qhi'cmi'r c {o gpvu."khi'cp {."o cf g'vq"yj g''EQP UWNVCP V''htqo "yj g''Ekx{0'Kb."kp"ku" uqng" f kuetgvkqp" yj g" EKV["qhi" Vco r c" f gvgto kpgu" yj cv'' c" r tqhguukqpcni' eqphrlev' qhi' kpvgtguv' ku" f ggo gf " vq" gzkuv." yj g" EQP UWNVCP V''uj cmi'dg'f kus wcrkhlef 'htqo 'r ctvkekr cvkpi 'kp"yj g''r tqr qugf 'Rtqlgev0'

XIV. <u>COMPLIANCE WITH LAWS</u>

" C0' Vj g"EQP UWNVCP V"uj cm'eqo r n("y kj "vj g"cr r necdng"tgs wkt go gpvu"qh"Ucvg"ncy u"cpf "cm'Eqf gu"cpf " Qtf kpcpegu"qh'vj g"Ekv{ "qh'Vco r c"cu"co gpf gf 'htqo "vko g"vq"vko g0'

- "DO' Ki'y g''RTQIGEV''kpxqnxgu''GR0C0'I tcpv'grki kdng''y qtm''y g''EKV["cpf "y g''EQP UWNVCP V''ci tgg"y cv' y g'r tqxkukqpu''qh'62''EHT.''Rctv'57.''Cr r gpf kz "E/3.''uj cm'dgeqo g''c'r ctv'qh''y ku''Ci tggo gpv''cpf "y cv'uwej ''r tqxkukqpu''uj cm' uwr gtugf g''cp{ "eqphrevkpi ''r tqxkukqpu''qh''y ku''Ci tggo gpv'hqt''y qtm''r gthqto gf ''wpf gt''uckf ''Ci tggo gpv''
- " E0' Ki'y g"RTQLGEV"kpxqrxgu"y qtm'wpf gt"qy gt"Hgf gtcn'qt"Ucvg"I tcpvqtu"qt"Crrtqxkpi "Ci gpekgu."y g" EKV["cpf "y g"EQP UWNVCP V'uj cm'tgxkgy "cpf "crrtqxg'y g"crrnlecdrg"tgs wktgf "rtqxkukqpu"qt"cp{ "qy gt"uwrrngo gpvcn' rtqxkukqpu"cu"o c{"dg"kpenwf gf "kp"y g"Ci tggo gpv0'
- "F0' Vtwj /Kp/P gi qwcwqp"Egtwkkecwqp<"Vj g'EQP UWNVCP V'egtwkkgu'vj cv'vj g''y ci g'tcvgu'cpf "qvj gt'hcewcn' wpkw' equvu'' uwr r qtwkpi "vj g'' eqo r gpucwkqp" ctg" ceewtcvg. "eqo r ngvg. "cpf "ewttgpv" cv'' vj g''' wo g'' qhl'' vj g'' gzgewkqp" qhl'' vj g'' Ci tggo gpv'qh'y j kej "vj ku''Egtwkkecvg'ku''c''r ctv0"'Vj g''qtki kpcn'r tkeg''cpf "cpf "cff kwkqpu''vj gtgvq''uj cmi'dg''cf lwurgf "vq''gzenwf g'' cpf "uki pkkecpv'uwo u''d $\{$ "y j kej "vj g''Ek $\{$ "f gvgto kpgu''yj g''Ci tggo gpv''co qwpv'y cu''kpetgcugf "f wg''vq''kpceewtcvg. "kpeqo r ngvg." qt''pqp/ewttgpv''y ci g''tcvgu''cpf "qvj gt''hcewcn''wpk''equvu''cpf "vj cv''uwej "qtki kpcn''Ci tggo gpv''cf lwuro gpvu''uj cmi'dg''o cf g'' y kj kp''qpg'*3+"{gct''hqmqy kpi "vj g''gpf "qh''y g''Ci tggo gpv0'

XV. <u>ASSIGNABILITY</u>"

" Vj g"EQPUWNVCPV"uj cm'pqv"cuuki p"qt" vtcpulgt"cp{"kpvgtguv"kp" yi ku"Ci tggo gpv" y kyi qww"eqpugpv"htqo "yi g" EKV[="r tqxkf gf ."j qy gxgt."yi cv'yi g"encko "hqt"o qpg{"f vg"qt"vq"dgeqo g"f vg"yi g"EQPUWNVCPV"htqo "yi g"EKV["wpf gt" yi ku"Ci tggo gpv"o c{"dg"cuuki pgf "vq"c"dcpm"qt"qyi gt"hkpcpekcn"kpuvkwwkqp"qt"vq"c"Vtwuvgg"kp"Dcpmtwr ve{0"Pqvkeg"qh"cp{" uwej "cuuki po gpv'uj cm'dg"hwtpkuj gf "r tqo r vn{"vq"yi g"EKV[0"

XVI. EQUAL EMPLOYMENT"

- Fwtkpi ''y g'r gthqto cpeg''qh''y ku''Ci tggo gpv''qt''cp{''tgrcvgf ''Y qtm'Qtf gt.''y g'EQPUWNVCP V''uj cm''
- "C0" P qv'f kuetlo kpcvg"ci ckpuv'cp{"go r m{gg"qt"cr r rkecpv'hqt"go r m{o gpv'dgecwug"qh'tceg."eqnqt."tgrki kqp." ci g."ugz."j cpf kecr."qt"pcvkqpcn'qtki kp0'Vj g"EQP UWNVCP V"uj cml'vcng"chhto cvkxg"cevkqp"vq"gpuwtg"vj cv'cr r rkecpvu"ctg" go r m{gg"cpf "vj cv'go r m{ggu"ctg" vtgcvgf "f wtkpi "go r m{o gpv'y kj qwv'tgi ctf "vq"vj gkt"tceg."eqnqt."tgrki kqp."ci g."ugz." j cpf kecr."qt"pcvkqpcn'qtki kp0"Uwej "cevkqp"uj cml'kpenxf g."dwl'pqv'dg"rko kgf "vq"vj g"hqmy kpi <"Go r m{o gpv."wr i tcf kpi ." f go qvkqp."qt"vtcpuhgt="tget wko gpv'cf xgt vkukpi ="mc{qhh'qt"vgto kpcvkqp="tcvgu"qh'r c{"qt"qvj gt"hqto u"qh'eqo r gpucvkqp="cpf" ugrgevkqp"hqt"vtckpkpi ."kpenxf kpi "cr r tgpvkeguj kr 0""Vj g"EQP UWNVCP V"uj cml'r quv'kp"eqpur kewqwu"r megu."cxckmdmg"vq" go r m{ggu'cpf "cr r rkecpvu"hqt"go r m{o gpv."pqvkegu"vq"dg"r tqxkf gf "ugwkpi "hqtvj "vj g"r tqxkukqpu"qh'vj ku"pqpf kuetlo kpcvkqp" emwug0"
- " D0' Kp"cm'uqrkekcvkqpu"qt"cf xgtvkugo gpvu"hqt"go r nq { ggu"r meegf "d{"qt"qp"dgj cnh'qhl'y g"EQP UWNVCP V."kv" o wuv"uvcvg" yi cv"cm' s wcnkhgf "cr r nkecpvu" y km' tgegkxg" eqpukf gtcvkqpu"hqt" go r nq { o gpv' y kyi qww' tgi ctf " vq" tceg." eqnqt." tgrki kqp. "ci g."ugz."j cpf kecr ."qt"pcvkqpcn'qtki kp0'

XVII. EQUAL BUSINESS OPPORTUNITY PROGRAM"

- " C0' Vj g"EQP UWNVCP V"uj cm'f go qpurtcvg"i qqf "hckj "ghhqtv"vqy ctf "vj g"wkrk cvkqp"qh'Ekv{ "qh'Egtvkhkgf" Y qo gp 10 kpqtkv{ "Dwukpguu" Gpvgtr tkug" *Y 10 DG+" cpf "Uo cm' Nqecn' Dwukpguu" Gpvgtr tkug" *UNDG+" uwdeqpuwncpvu" qt" uwr r nkgtu0'
- ' D0' Vj g'EKV['tij cm'o cng'cxckrcdng'c'hkuv'qh'Egt khlgf "Y 10 DGu'cpf 'UNDGu0'
- " E0' Vj g'EQP UWNVCP V''uj cm'tgr qtv''vq''yj g'EKV[''kxu''uwdeqpvtcevqtuluwdeqpuwncpvuluwr r rkgtu''uqrkeksgf "qt'' wkrkl gf ''(Exhibit D)."

"""""Tgxkugf '9/43/37"

7

"F0" Cv''yi g"'vko g"qh''yi g"'uwdo kuulqp"qh''kpxqlegu."yi g"EQP UWNVCP V"uj cm''uwdo kv''vq"yi g"EKV["c"tgr qtv'' (Exhibit D)"qh'cm''uwdeqputcevqtu."uwdeqpuvncpvu"qt "uwr r nkgtu''wkrk gf "y kyi "yi gkt "hkpcn'eqpvtcev'co qwpvu"cpf "cp{"qyi gt" tgr qtvu'qt 'hqto u''cu''o c{"dg'tgs wktgf 'd{"yi g'EKV[0'

XVIII. <u>CITY CODE OF ETHICS</u>"

Kp"eqppge-kqp"y kj "ý ku"Ci tggo gpv."ý g"EQP UWNVCP V"j gtgd{"eqxgpcpw"cpf "ci tggu"ý cv'kv'uj cm'eqo r n{"y kj "cm'cr r necdrg"i qxgtpo gpvcn'rcy u."uvcwwgu."twgu"cpf "tgi wrcvlqpu"kpenvf kpi ."y kj qww'nko kcvkqp."ý g"Ekv{"qh"Vco r cøu" Eqf g'qh'Gy keu0"Rwtuvcpv'vq"Ugevkqp"4/744'qh'ý g"Ekv{"qh"Vco r c'Eqf g."ý g"EQP UWNVCP V"cempqy rgf i gu'ý cv'kh'kv'rcknu" vq"eqo r n{"y kj "ý g"Ekv{"qh"Vco r cøu"Eqf g"qh"Gy keu "uwej "c"rcknvtg"uj cm'tgpf gt"yj ku"Ci tggo gpv'xqkf cdrg"d{"ý g"Ekv[" cpf "uwdlgev'ý g"EQP UWNVCP V"vq"f gdcto gpv'htqo "cp{"hwwtg"Ekv[" eqpvtcevu'qt"ci tggo gpvu0'

XIX. NEGATION OF AGENT OR EMPLOYEE STATUS"

"EQP UWNVCP V'tij cml' gthqto ''tj ku'Ci tggo gpv'cu'cp'kpf gr gpf gpv'eqpuwncpv'cpf ''pqvj kpi 'eqpvckpgf 'j gtgkp''tij cml' kp''cp{''y c{''dg''eqpuvtwgf ''q''eqpuvkwg''EQP UWNVCP V''qt''tj g''cuukuvcpvu''qh'EQP UWNVCP V''vq''dg''tgr tgugpvcvkxg. ''ci gpv'' uwdci gpv.'' qt'' go r mq{gg'' qh'' EKV["qt''cp{"r qrkskecn'' uwdf kxkukqp'' qh'' yj g'' Uvcvg'' qh'' Hnqtkf c0' "EQP UWNVCP V'' egtvkhgu'' EQP UWNVCP V u'wpf gtuvcpf kpi ''tj cv'EKV[''ku'pqv'tgs wktgf ''q''y kj j qrf ''cp{ 'hgf gtcrlkpeqo g''cz.''uqekcrlugewtks(''cz.''urcvg'''

 $cpf "iqecn'vcz." 'q"ugewtg" y qtngt u"eqo r gpucvlqp" | lpuwtcpeg" qt "go r iq {gt u"nlcdktk { "lpuwtcpeg" qh'cp { "inkpf "qt" vcng" cp { "inkpf "qt" vcng" cp { "inkpf "gurwtcpeg" qt' vczgu' qh'EQP UWNVCP V'cpf "cuulkncpwi' qh'EQP UWNVCP VO' | lpuwtcpeg |$

Kp"pq"gxgpv"cpf "wpf gt "pq"ektewo uvcpegu"uj cm"cp{"rtqxkukqp"qh"yj ku"Ci tggo gpv"o cmg"EK/["qt"cp{"rqrkkecn" uwdf kxkukqp"qh"yj g"Uvcvg"qh"Hnqtkf c"hcdng"vq"cp{"r gtuqp"qt"gpvkk{"yj cvleqpvtcewi'y kyj "qt"yj cvlr tqxklf gu"i qqf u"qt"ugtxkegui'vq" EQP UWNVCP V"b cu"ci tggf "vq"r gthqto "j gtgwpf gt"qt"qyj gty kug."qt" hqt"cp{"f gdvu"qt"encko u"qh"cp{"pcwtg"ceetwkpi "vq"cp{"r gtuqp"qt"gpvkx{"ci ckpuv"EQP UWNVCP V="cpf" yj gtg"ku"pq" eqpvtcewcnttgncvkqpuj kr."gksj gt"gzr tguu"qt"ko r nkgf."dgwy ggp"EK/["qt"cp{"rqrkkecn'uwdf kxkukqp"qh"yj g"Uvcvg"qh"Hnqtkf c"cp{"r gtuqp"qt"gpvkx{"uwr r n{kpi "cp{"y qtm"ncdqt."ugtxkegu." i qqf u"qt"o cvgtkcmi'vq"EQP UWNVCP V"cu"c'tguwn/qh"yj g"tqxkukqpu"qh"yj g"Ugtxkegu"r tqxkf gf "d{"Eqpuwncpv"j gtgwpf gt"qt" qyj gty kug0"

XX. SEVERABILITY"

"Ki'cp{'kgo "qt"r tqxkukqp"\q'\j ku'Ci tggo gpv'ku'j grf 'kpxcrkf "qt"\wpgphqtegcdrg'd{"c"eqwtv'qh'eqo r g\gpv'kutkuf ke\kqp." yi g"tgo ckpf gt"qh'\j g"Ci tggo gpv'uj cm'pqv'dg"chtge\gf "cpf "gxgt{"q\j gt"\gto "cpf "r tqxkukqp"qh"\j ku"Ci tggo gpv'uj cm'dg" f ggo gf "xcrkf "cpf "gphqtegcdrg"\q'\j g"gz\gpv'r gto k\wf "d{"rey 0"

XXI. CHOICE OF LAW"

" Vj g"rcy u"qh"yj g"Ucvg"qh"Hrqtlf c"*y kij qw"i kxlpi "ghlgev"vq"ku"eqphlevu"qh"rcy "r tkpekr rgu+"i qxgtp"cm"o cwgtu" ctkulpi "qw"qh"qt"tgrcvlpi "vq"yj ku"Ci tggo gpv."kpenwf kpi ."y kij qw"ho kcvkqp."ku"kpvgtr tgvcvkqp."eqpuvtwevkqp."r gthqto cpeg." cpf "gphqtego gpv0"

XXII. <u>DESIGNATION OF FORUM</u>

"Cp{"rctv{"dtkpi kpi "c"rgi cn'cevkqp"qt"rtqeggf kpi "ci ckpuv"cp{"qyj gt"rctv'ctkukpi "qw'qh"qt"tgrcvkpi "vq"yj ku" Ci tggo gpv'o c{"dtkpi "yj g"rgi cn'cevkqp"qt"rtqeggf kpi "kp"yj g"Wpksgf "Ucvgu"F kuvtkev'Eqwtv'hqt"yj g"O kf f rg"F kuvtkev'qh" Hnqtkf c."Vco r c'F kxkukqp"qt'kp"cp{"eqwtv'qh'yj g"Ucvg'qh'Hnqtkf c'ukvkpi 'kp"Vco r c0'

XXIII. <u>AUTHORIZATION</u>

"Gcej "r ctv{ "tgr tgugpvu" vq" vj g" vj g" vj cv'uvej "j cu'cwj qtk{ "wpf gt "cm'cr r necdng" ncy u" vq" gpvgt "kpvq" cp" ci tggo gpv' eqpvckpkpi "gcej "eqxgpcpvu" cpf "r tqxkukqpu" cu'ctg" eqpvckpgf "j gtgkp. "vj cv'cm'qh' vj g"r tqegf wtcn'tgs wktgo gpvu" ko r qugf "d{" ncy "wr qp" gcej "r ctv{ "hqt" vj g" cr r tqxcn' cpf "cwj qtk| cvkqp" qh' vj ku" Ci tggo gpv' j cxg" dggp" r tqr gtn{ "eqo r ngvgf." cpf "vj cv' vj g" r gtuqpu" vj q" j cxg" gzgewgf "vj g" Ci tggo gpv' qp" dgj cnh' qh" gcej "r ctv{"ctg" cwj qtk| gf "cpf "go r qy gtgf" vq" gzgewg" uckf" Ci tggo gpv0'

XXIV. ENTIRE AGREEMENT

" Vj ku" Ci tggo gpv" ugvu" hqtyj " yj g" gpvktg" ci tggo gpv" dgwy ggp" yj g" r ctvkgu" cpf " yj gtg" ctg" pq" r tqo kugu" qt" wpf gtuvcpf kpi u"qyj gt" yj cp" yj qug"uvcvgf "j gtgkp0" "Gzj kdksu" vq" yj ku" Ci tggo gpv" uj cm" dg" f ggo gf " vq" dg" kpeqtr qtcvgf "d { " tghgtgpeg" cu" yj qwi j "ugv" hqtyj "kp" hwni'j gtgkp0" "Kp" yj g" gzgpv" qh" c" eqphrkev" qt "kpeqpukuvgpe { "dgwy ggp" yj ku" Ci tggo gpv" cy g" r tqxkukqpu" kp" yj g" kpeqtr qtcvgf "Gzj kdksu." cpf "wprguu" qyj gty kug" ur gekhkgf "j gtgkp." yj gp" yj ku" Ci tggo gpv" y km" tgxckn0"

XXV." <u>INDEMNIFICATION</u>""

 $\label{eq:constraint} Vj \ g"EQP \ UWNVCP \ V"uj \ cm'kpf \ go \ pkh{\ "cpf "j \ qrf "j \ cto \ nguu" \ j \ g"EW[\ ."cpf "ku"qhhkegtu"cpf "go \ r \ nq{\ ggu."htqo " nkcdkrkkgu."f \ co \ ci \ gu. "nquugu."cpf "equvu. "kpenvf kpi ."dw'pqv'nko kgf "vq. "tgcuqpcdng"cvqtpg{u)"hggu. "vq"yj \ g"gz \ vgpv'ecvugf " d{" y \ g" pgi \ nki \ gpeg." tgemguupguu." qt "kpvgpvkqpcm{"y tqpi hwil eqpf wev" qh" y \ g" EQP UWNVCP V" cpf " qyj \ gt "r \ gtuqpu" go \ r \ nq{\ gf "qt "wkrk| gf "d{"y \ g"EQP UWNVCP V" kp"yj \ g"r \ gthqto \ cpeg"qh'yj \ g"Ci \ tggo \ gpv0"}$

XXVI. ESTOPPEL/WAIVER

- " P q"y ckxgt"qh"cp{"r tqxkukqpu"qh"y ku"Ci tggo gpv"uj cm"dg"ghhgevkxg"wprguu"kv"ku"lp"y tkklpi ."uki pgf "d{"y g"r ctv{" ci ckpuv"y j qo "kv"ku"cuugtvgf "cpf "cpf "uwej "y ckxgt"uj cm"qpn("dg"cr r necdrg"vq"y g"ur gekhle "kpuvcpeg"kp"y j kej "kv"tgrcvgu"cpf " uj cm"pqv"dg"f ggo gf "vq"dg"c"eqpvkpvkpi "y ckxgt0"
- "Vj g"lickwtg"qh''y g"EKV["vq"gphqteg"cp{"vgto "qt"eqpfkklqp"qh''y ku"Ci tggo gpv''uj cm'pqv'eqpuvkwwg"c"y ckxgt"qt" guvqr r gn'qh'icp{"uwdugs wgpv'xkqrcvkqp"qh''y ku'Ci tggo gpv0'

XXVII. AUDIT REQUIREMENTS.

 $\label{eq:problem:pr$

Vj g"cwf k/'uj cm'dg"eqpf weyf "kp"eqo r rkcpeg"y kj "'y g"Qhhkeg"qh'O cpci go gpv'cpf "Dwf i gv'Ektewct"P q0'C/355. "cu"co gpf gf "cpf "46"EHT "Rctwi": 6"cpf ": 7. "cu"cr r rkecdig. "y j kej "ctg"o cf g"c"r ctv'qh''y ku"Ci tggo gpv'd { "tghgtgpeg" y gtgvq0" "Kp" y g"gxgpv''y g"cwf kv''uj qy u" y cv''y g"gpvktg" hwpf u"f kudwtugf "j gtgwpf gt. "qt "cp { "r qtvkqp" y gtgqh" y gtg"pqv' gzr gpf gf " kp" ceeqtf cpeg" y kj " y g" eqpf kkqpu" qh" y ku" Ci tggo gpv." EQP UWNVCP V" uj cm' dg" j grf " rkcdrg" hqt" tgko dwtugo gpv''q'y g"Ekv{ "qh'cmlhwpf u'pqv'gzr gpf gf "kp"ceeqtf cpeg"y kj "y gug"cr r rkecdrg'tgi wcvkqpu'cpf "Ci tggo gpv'' rtqxkulqpu"y kj kp" y ktv{ "*52+"ecropf ct"f c { u"chygt" y g"Ekv["j cu"pqvkhkgf "EQP UWNVCP V"qh'"uwej "pqp/eqo r rkcpeg0" Uckf 'tgko dwtugo gpv'uj cm'pqv'r tgenwf g" y g"Ekv["htqo "vcmkpi "cp { "qy gt "cevkqp"cu"r tqxkf gf "j gtgkp0'

"Ki'gzr gpf kwtg"f qgu"pqv'gzeggf "&722.22202"f vtkpi "cp"qr gtcvkpi "{gct."EQP UWNVCP V"uj cm'r tqxkf g"vj g" EKV["y kj "ku"cppvcn'hlpcpekcn'uvcvgo gpv'vj kj kp"pkpgv{"*; 2+"f c{u"qh"vj g"gpf "qh"ku"qr gtcvkpi "{gct0""Uckf "hlpcpekcn'uvcvgo gpv'uj cm'dg"r tgr ctgf "d{"cp"cevkxgn{ 'rhegpugf "egt vkhkgf 'r vdrke'ceeqwpvcpv0'

XXVIII. DEFAULT"

"Kp"ceeqtf cpeg'y kj "46"EHT": 7065."c"f ghcwn'uj cni'eqpukn'qh'cp{"wug"qh'I tcpv'Hwpf u'hqt"c"r wtr qug"qy gt"y cp"cu" cwj qtk| gf "d{"y ku'Ci tggo gpv."pqpeqo r ncpeg'y kj "cp{"r tqxkulqp"kp"cm'Ctvlengu'j gtgkp."cp{"o cvgtkcn'dtgcej "qh'y g" Ci tggo gpv."hcknutg"vq"eqo r n("y kj "y g"cwf kv"tgs wktgo gpvu"cu"r tqxkf gf "j gtgkp."qt"hcknutg"vq"gzr gpf "I tcpv"Hwpf u"kp"c" vko gn("qt"r tqr gt"o cppgt0"

XXIX." BUDGET APPROPRIATIONS

 $\label{thm:linear} Vj g'EKV['ku'uwdlgev'vq'Ugevkqp''3880463." \underline{Hnqtkf c''Uvcwwgu}." cpf 'ku'pqv'cwj qtkj gf 'vq'eqpvtcev'hqt''gzr gpf kwt gu' kp''cp{ ''hkuecn' {gct''gzegr v'kp''r wtuwcpeg''qh''dwf i gvgf ''crrtqrtkcvkqpu0'Y kj ''tgur gev''vq''vj ku''Ci tggo gpv.''vj g''EKV[''j cu'' dwf i gvgf ''cpf ''crrtqrtkcvgf ''uwhhkekgpv'o qpkgu''vq''hwpf ''yj g''EKV['\gammau''qdrki cvkqpu''wpf gt''vj ku''Ci tggo gpv.''j qy gxgt." cm' hwpf kpi ''wpf gt''vj ku''Ci tggo gpv''hqt''uwdugs wgpv''{gctu''ku''uwdlgev'vq''vj g''cxckrcdkrkv{"qh''hwpf u0'''Vj g''qdrki cvkqpu''qh''vj g'' EKV[''j gtgwpf gt''uj cm''pqv''eqpuvkwwg''c'' i gpgtcn''kpf gdvgf pguu''qh''vj g''EKV[''y kyj kp''vj g'' o gcpkpi ''qh''vj g'' Hnqtkf c'' Eqpuvkwwkqp0'$

" $\mbox{\sc R}$ "Y $\mbox{\sc KP}$ GUU'Y J GTGQH "yj g"E $\mbox{\sc R}$ "j cu"ecwugf "yj gug"r tgugpvu"vq"dg"gzgewgf "lp"ku"pco g"d{ "ku"O c{qt."cpf " cwgungf "cpf "ku"qhhelcn"Ugcn'vq"dg"j gtgwpvq"chhlzgf "d{ "ku"Ek{ "Engtm"cpf "yj g"EQP UWNVCP V"j cu"j gtgwpvq"ugv'ku"j cpf " cpf "Ugcn'lp"VT\mbed RN\mbed CVG. "yj g"f c{"cpf "{gct'htuv'y tkwgp"cdqxg0'}

"
CVVGUV<" " " " " "

..........

CVVGUV<" " " " " " "

"

CRRTQXGF'CU'VQ'NGICN'UWHHKEKGPE["

Vj g"gzgewkqp"qh'vj ku'f qewo gpv'y cu'cwj qtkl gf "d{" Tguqnwkqp"Pq04237/aaa"

EKV['QH'VCORC"

· '"""""Tgxkıgf '9/43/37"

EXHIBIT A

Scope of Work

The scope of work below is based on: 1) Limited Phase 2 Site Investigation (dated July 25, 2014) prepared by Progressive, which identified recognized environmental conditions related to groundwater and soil contamination (attached hereto as Attachment 1); 2) the preliminary cost estimates for assessment and remediation (Progressive letter to City dated July 18, 2014)(attached hereto as Attachment 2); and 3) the general discussions during the meeting between Progressive and the City on August 5, 2015 regarding coordination of remedial efforts with renovation/redevelopment activities being performed by others under separate contract with the City.

- Task 1 Completion of a site assessment according to Brownfield Program requirements under Chapter 62-780, F.A.C. to include: installation of one 20-foot replacement monitoring well, up to five 50 ft deep wells, three 80 ft deep wells, and two 100 ft deep wells; laboratory analysis of groundwater samples collected from existing and new wells for known constituents of concern; limited soil sampling and laboratory analysis from known previously impacted areas; preparation of a Site Assessment Report; and development of conceptual remedial approach. Scope includes characterization and disposal of investigation derived waste (soil/decon water) from installation of new wells.
- Task 2 Preparation and agency approval of a Pilot Study/Feasibility Study Work Plan, if necessary, and implementation and completion of the Pilot/Feasibility Study, if necessary.
- Task 3 Preparation of a remedial design including preparation of and agency approval of a Remedial Action Plan (RAP).
- Task 4 Completion of soil excavation and appropriate disposal, if necessary, to meet cleanup goals.
- Task 5 Installation of the remedial system, preparation of As-Built drawings (if needed), and preparation of a Remedial Action Startup Report after system is operational.
- Task 6 Remedial system operation & maintenance, remedial system performance monitoring, as necessary, and groundwater monitoring and reporting during the period of active remediation as defined in the approved RAP.
- Task 7 Post-active remediation monitoring, and/or natural attenuation monitoring (NAM) of groundwater for a total time period of up to 10 years (from start of remediation efforts) as necessary to meet the criteria for a conditional closure under Chapter 62-780, F.A.C.

- Task 8 Decommissioning of any remedial systems constructed during performance of the contract, proper well abandonment, and associated documentation/reporting to state and local agencies as required after active remediation is completed.
- Task 9 Preparation and submittal of a Site Rehabilitation Completion Report and Request for No Further Action proposal with or without conditions, as applicable, once the site has met closure criteria. Proper well abandonment for any remaining wells upon approval by the regulatory agency.
- Task 10 Preparation of annual Voluntary Cleanup Tax Credit (VCTC) Applications for submittal to the Florida Department of Environmental Protection (FDEP), as needed, for the duration of the project. VCTC Applications will be certified by a licensed Certified Public Accountant (CPA).
- Task 11 Providing assistance/support to the City in its efforts related to agency negotiations, public meetings and other activities, as needed, to obtain a Brownfield Area Designation and executing a Brownfield Site Rehabilitation Agreement (BSRA) for the site.
- Task 12 Procuring a subcontractor to provide geotechnical services in accordance with a scope of work to be provided by the City's Design/Build Contractor for the planned site renovations/redevelopment; the geotechnical work is intended to help the City and their Design/Build Contractor evaluate the feasibility of demolition and redevelopment vs. renovation of the existing site structures.

All of the tasks above include project management, coordination and communication with state and local regulatory agencies as required under Chapter 62-780, F.A.C.; obtaining permits required by state and local agencies for the activities performed; coordination with the City, the City's future Design/Build Contractor for the future facility, and their subcontractors as necessary to ensure efficient use of City funds under both this contract and the City's Design/Build Contract for site renovation/redevelopment; and preparation and submittal of all reports required by the activities being performed under Chapter 62-780, F.A.C., per the BSRA (prepared by the City), to appropriate state and local regulatory agencies.

Assumptions

The above scope of work assumes the following:

- On-site contaminant source remediation will involve chemical oxidation or bioremediation via injections into the subsurface to depths of no more than 50 ft. by Progressive.
- Costs for excavation and disposal of soils to meet cleanup goals, per Task 4, cannot be determined at this time, but will be provided and coordinated by Progressive.
- Off-site remediation will include natural attenuation monitoring (NAM) for several years after on-site source reduction by Progressive.

Page 3

• Monitoring locations and/or frequencies will be reduced over time as the contamination gradually attenuates by Progressive.

Data and Services to be Provided by the City (reference Agreement, Article II.)

The above scope of work assumes the following:

- Obtaining a Brownfield Designated Area and execution of a BSRA will be done by the City.
- Completion and execution of a deed restriction (if needed) for a conditional closure of the site will be done by the City.
- Post-closure maintenance for the paved areas (engineered control) will be done by the City.

Schedule/Period of Service (reference Agreement, Article III.)

The sequencing of remedial activities to complete site assessment and rehabilitation will proceed in accordance with the schedule in the executed BSRA. It is anticipated that the remedial construction effort will be 3-5 years of the anticipated 10 year duration for completion of the scope of work.

Limited Phase II Site Investigation Former General Cable Facility

2515 E. Hanna Avenue, Tampa, FL

Prepared for

City of Tampa

July 25, 2014

Prepared by

Progressive Engineering & Construction, Inc. 3912 W. Humphrey Street
Tampa, FL 33614
Tel. 813-930-0669
Fax. 813-930-9809
www.progressiveec.com

Bridget S. Morello, P.E.

Florida P.E. #56914

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	MONITORING WELL INSTALLATION 2.1 South Side of Site/Southwest of Former Tin Plating Building 2.2 South of Former Tin Plating Building 2.3 East Side of Main Building 2.4 Rail Spur 2.5 Southwest Side of Main Building 2.6 Summary of Well Installations]
3.0	GEOLOGY/HYDROGEOLOGY	
4.0	GROUNDWATER SAMPLING AND ANALYSIS	7
5.0	EVALUATION OF RESULTS OF INVESTIGATION5.1 Recommended Next Steps	
6.0	REFERENCES	11
	<u>TABLES</u>	
1. 2.	Well Construction Details & Groundwater Elevation Summary Summary of Groundwater Quality Data	
	<u>FIGURES</u>	
1. 2. 3. 4. 5. 6.	Site Location Map Lagos & Associates, Inc. Map Monitoring Well Location Map Shallow Groundwater Contour Map Intermediate Groundwater Contour Map Deep Groundwater Contour Map Groundwater VOC Concentrations	
	<u>ATTACHMENTS</u>	
A. B. C. D. E.	Well Construction Diagrams/Boring Logs Photo Documentation of Well Installations Groundwater Sampling Logs Laboratory Analytical Data Reports Cost Estimate Letter	

1.0 INTRODUCTION

Progressive Engineering & Construction, Inc. (Progressive), prepared this report to provide the City of Tampa Solid Waste Department Office of Environmental Coordination (City) a summary of the limited Phase II site investigation completed for the former General Cable facility located at 2515 East Hanna Avenue, Tampa, FL (Figure 1). Based upon historical documents, Progressive developed a scope of work to evaluate the general magnitude of current environmental impacts to subsurface soil and groundwater and the potential cost to remediate those impacts should the City decide to purchase the property. The results of the limited investigation are summarized below.

1.1 Background/Areas of Concern

Based upon the nature of historical operations at the site, numerous areas of potential concern for environmental media were previously identified and investigated by others (Figure 2). These included:

- tin plating building (later used for vehicle maintenance);
- air compressor area on southwest side of the main building;
- former methyl ethyl ketone (MEK) still on southeast side of main building;
- east end of the main building in the cable labeling process area where MEK/ink drawing solution tanks formerly were located outside the building;
- former paint shed area (south of former above-ground storage tank (AST) location);
- stormwater discharge pipe and ditch where the parts washer sink previously discharged;
- area south of the main building where drum(s) of ethylene glycol and sodium hydroxide waste were reportedly found leaking in the early 1990s;
- area on the south side of the site where used oil, spent MEK, and MEK product was stored; and
- former lead press pit and boiler room inside the building.

Previous investigations performed at the site confirmed that there was contamination present in soil and groundwater in some of the areas of the site.

- Groundwater impacted with lead, MEK, and cis/trans-1,2-dichloroethene (DCE) was reported from a temporary well installed in 1994 by Lagos & Associates, Inc. southwest of the main manufacturing building, and tetrachloroethene (PCE) was reported above groundwater cleanup target levels in a sample obtained from a monitoring well installed to 30 feet below land surface (ft bls) by PES Associates, Inc. in 2011 in the area near the rail spur on the eastern side of the property.
- There are also a number of areas where soils may have been impacted from past operations. A brief site visit performed by Progressive on May 28, 2014, revealed that there is oil staining throughout the floors of buildings where tin

plating, vehicle maintenance, and other possible manufacturing operations may have taken place. Although some soil impacts were confirmed in previous limited investigations completed by Lagos & Associates, Inc. (1994, 1996) and Pilko & Associates, Inc. (1996), high levels of contamination in soils tested from several of the areas listed above were not found in those studies. In addition, although there may be some soil impacts, remediation of such impacts is not considered to be a likely major cost when compared to the potential cost of active remediation of groundwater contamination, if needed.

Progressive's investigation was focused on evaluating the potential for significant groundwater contamination to be present at the facility because potential remedial costs would be driven by dealing with groundwater impacts if any were found. Potential soil impacts were not considered as significant as groundwater since the site has been inactive for several years, is covered with large buildings and paved areas, and, if acquired by the City, the City intends to maintain this level of impervious site coverage.

Previous data showed that at least the uppermost Upper Floridan (intermediate aquifer) contained PCE, and several other solvents reported to have been used at the site including 1,1,1,-trichloroethane (TCA). The solvent 1,1,1-TCA often contained 1,4-dioxane, which was added as a stabilizer. Because 1,4-dioxane is essentially miscible in water, if it were present at significant concentrations, it would be very expensive to remediate.

1.2 Conceptual Site Model

Previous studies at this property and nearby sites identified that a shallow perched aquifer is found sporadically throughout this area of Tampa and was previously found to be present under at least a portion of the property south of the main manufacturing building. The direction of groundwater flow in the shallow perched zone has generally been to the south and southeast; however, one report indicated that it was northeastward.

Beneath the perched aquifer lies what has been referred to as an "intermediate" aquifer, which is considered to be the top of the Upper Floridan Aquifer, which is present in weathered limestone and the underlying dense clayey/silty limestone of the Tampa Member of the Arcadia Formation. This intermediate aquifer was encountered during previous investigations at approximately 25 to 30 feet bls at the site. Based upon investigations done by the Florida Department of Environmental Protection (FDEP) at the nearby Former National Linen site, the direction of groundwater flow is thought to be westward (either to the northwest or southwest) in the intermediate aquifer in this area (IT Corp., 1997; PSI, 2008; and CRA, 2013).

Progressive's investigation confirmed that the direction of groundwater flow at the site is northwestward in the shallow perched zone and westward in the intermediate and deep zones.

2.0 MONITORING WELL INSTALLATION

Progressive originally proposed to install four intermediate (35 ft bls) wells and one deep (50 ft bls) well to investigate several potential source areas and to evaluate groundwater flow in the intermediate aquifer. Contingency wells would be added in the event that field screening using a photo-ionization detector (PID) indicated that subsurface impacts were significantly greater than anticipated. Parameters to be analyzed in the laboratory included those of concern considering the operations and materials that were historically handled at the site.

Progressive oversaw the installation by Cascade Drilling LP of four intermediate-depth monitoring wells to approximately 35 ft bls, two deeper wells to 50 ft bls, and one shallow well to 10 ft bls. Well locations were based upon areas of concern identified in previous reports. Due to the timing of the field investigation and availability of drilling rigs and personnel, a rotosonic rig was used instead of the originally proposed hollow stem auger and mud rotary drilling methods. This method yields continuous soil cores and is actually a preferable method of well installation because it does not require drilling mud, it gives continuous lithologic cores, and generates less investigative derived waste (IDW) to be disposed of after the wells are installed. The deep wells were installed by driving a temporary casing to the appropriate depth to isolate the upper zone, and then drilling through this temporary casing, which was then removed as the deep well was completed.

All of the monitoring wells were completed with 8-inch round steel bolt down manhole covers installed within 2-ft by 2-ft concrete pads that were sloped to drain rainfall away from the cover. Wells were developed in accordance with acceptable methods using a submersible pump. All drill cuttings and development water were drummed in 55-gallon drums for off-site disposal.

The monitoring well locations are shown on the attached Figure 3. The boring logs and well construction diagrams are included in Attachment A. Photographs from the field work are included in Attachment B. Descriptions of the field efforts in each area of concern are detailed below.

2.1 South Side of Site/Southwest of Former Tin Plating Building

On June 16, 2014, an intermediate well (MW-5) was installed to 35 ft bls near the area where waste oil, waste MEK and raw MEK was formerly stored on the south side of the site. No perched aquifer was observed at this location, and PID readings did not indicate excessive contamination in soil samples collected. Based upon the low PID readings, which decreased in the deeper portions of the borehole, it was not considered necessary to install a deeper contingency well at this location.

2.2 South of Former Tin Plating Building

One intermediate well (MW-6) was installed on June 17, 2014, south of the former tin plating building where an aboveground used oil tank and a tank with unknown contents

were formerly present. No perched aquifer was observed at this location, and PID readings did not indicate excessive contamination in soil. Based upon the field screening, it was not considered necessary to install a deeper contingency well at this location.

2.3 <u>East Side of Main Building</u>

On June 17, 2014, an intermediate well (MW-7) was installed to a depth of 35 ft bls approximately 30 ft east of the main manufacturing building near the location where several piping lines formerly exited the wall of the building and where drawing solution (ink) tanks were formerly known to have been located. No perched aquifer was observed at this location, and PID readings did not indicate excessive contamination in soil. It was not considered necessary to install a deeper contingency well at this location.

2.4 Rail Spur

The intermediate well (MW-4) that was installed in 2011 by PES Associates, Inc. was found in the paved area south of the rail spur (Figure 3). Therefore, no additional intermediate well was installed at this location, and only the planned deep well (DW-1) was installed near the rail spur where MW-4 had previously shown chlorinated compounds in the 30 ft zone. The deep well was installed to 50 ft bls on June 17, 2014.

2.5 Southwest Side of Main Building

On June 18-19, 2014, the installation of monitoring wells was initiated in this area of concern. It was anticipated that an intermediate well and a deep well would be installed at this location based upon the former presence of an air compressor and previous groundwater analyses that had reported elevated MEK, lead, and chlorinated solvents here. Initial drilling indicated that a perched aquifer zone was present and the PID screening indicated that shallow soils were impacted. Therefore, Progressive also installed a shallow well screened between 2 and 10 ft bls to assess the contamination present in the perched aquifer.

After the first boring was terminated at 10 ft and a shallow well completed, an intermediate well was initiated next to it. Dense grey clay was first encountered at a relatively shallow depth of 10 ft bls in this boring. Below that sandy clays containing some limestone fragments were present to 21 ft bls where another dense gray clay was encountered that extended down to 27 ft bls where brown clay with limestone and blue clay layers were found extending down to 35 ft bls. Between 31 and 35 ft bls, the PID readings indicated that contaminant levels were increasing with depth. Therefore, the boring was terminated at 35 ft to avoid drilling through an impervious layer (i.e., clay) into a more transmissive layer (i.e., limestone) without protective surface casing, and an intermediate depth well (MW-8) was completed. This well was screened from 19 to 34 ft bls, with a slightly longer well screen that was anticipated, in order to ensure that sufficient groundwater would be present to be able to purge the well and collect representative samples. A temporary surface casing was then advanced adjacent to

MW-8 to a depth of 40 ft and a deeper 50 ft contingency well (DW-2) was installed in the upper portion of the weathered limestone of the Floridian Aguifer.

2.6 Summary of Well Installations

Based upon the field screening results, which did not suggest that excessive concentrations of contaminants were present at the depths to which most of the intermediate wells were installed, only one additional deep contingency well was installed. This deep well (DW-2) was installed near the southwest side of the main manufacturing building, where both intermediate and shallow wells were also installed, based upon elevated PID readings increasing near the bottom of the intermediate well depth. In addition, because the shallow zone appeared to indicate shallow contamination in this location, the two existing shallow wells (ES-1 and ES-2) south of this well cluster were also sampled, even though they had not previously shown impacts, to confirm whether a groundwater plume was present in the perched zone.

After the monitoring wells were installed, their locations, ground surface elevations, and top of casing elevations were surveyed by City of Tampa survey crew. Table 1 provides a summary of well construction and survey data for the new and existing wells at this site.

3.0 GEOLOGY/HYDROGEOLOGY

A thick section of clay strata with thin interbedded sands was observed in the western and southern areas of the site where MW-5, MW-8 and DW-2 were installed. Well MW-8, installed at the southwestern corner of the main manufacturing building, contained mostly clay layers from 10 ft bls down to the total depth of the boring of 35 ft. At MW-5 in the southern part of the site, clay strata also dominate from 9 ft bls to 30 ft bls. This well is screened from 25 to 35 ft bls across sandy clays and the top of the weathered limestone (encountered at around 30 ft bls).

A thinner section of clays was observed on the eastern half of the site where wells MW-6, MW-7 and DW-1 were installed. On the eastern portion of the site the clays overlying the weathered limestone of the Upper Floridan had a total thickness of only about 6 ft. Thus, it appears that the thicker section of clay layers seen in MW-8 and DW-2 are pinching out toward the east across the site, and the top of the limestone is found at shallower depths toward the east. This is consistent with the limestone appearing at increasing depths to the west and the general westward direction of groundwater flow in the Upper Floridan aquifer here.

3.1 Water Table Elevations

The water table in the perched zone is approximately 3 to 4 ft bls. In the intermediate and deep zones the water table is encountered at approximately 25 to 30 ft bls. The water level measured in intermediate-depth well MW-8 appears to reflect connectivity between the sandy clays that extend down to 15 ft bls and the overlying perched aquifer at this location as the water table measured in this well was just over 4 ft bls, which is similar to the water levels in the shallow perched aquifer wells (SW-1, EW-1 and EW-2), and is almost 20 ft above that of the other 35 ft deep wells on the site. The water levels in the other intermediate wells and the deep wells are similar and represent the water level in the top of the Upper Floridan aquifer.

4.0 GROUNDWATER SAMPLING AND ANALYSIS

Groundwater samples were collected for laboratory analysis in accordance with FDEP Standard Operating Procedures (SOPs) from all of the new wells, the existing intermediate well (MW-4), and the two existing shallow wells on June 25 and 26, 2014. Groundwater sampling logs are included in Attachment C. Parameters selected for groundwater analyses were based upon documented previous contamination and/or operations at the facility that may have resulted in environmental impacts. Samples were submitted to our contract laboratory, Southern Research Laboratory, Inc. (SRL) in Orlando, Florida, for analyses of volatile organic compounds (VOCs) by EPA Method 8260, SVOCs by EPA Method 8270, fluoride, boron, RCRA metals (lead, cadmium, chromium, barium, selenium, mercury, arsenic, and antimony), copper, aluminum, and tin. In addition, because ethylene glycol and sodium hydroxide were reported from a leaking drum located south of the main building in the early 1990s, sodium and ethylene glycol was also analyzed in intermediate depth groundwater samples. The deep wells were only analyzed for VOCs by EPA Method 8260 as the presence of solvents at depth was the main concern being evaluated for purpose of estimating potential cleanup costs. Laboratory analytical reports are included in Attachment D.

The existing intermediate well (MW-4) near the rail spur is only 1-inch diameter, and therefore could not be sampled using a submersible pump. Because the depth to water was more than 20 ft (peristaltic pump cannot pull from depths exceeding 20 ft), a bailer had to be used to purge and sample this well. Purging was difficult because there was only about 3 feet of water in the bottom of the well screen, but field personnel were able to obtain one VOA vial for VOC analysis. If the City needs to sample this aquifer zone at this location in future, Progressive recommends that this well be properly abandoned (it is also not properly finished with a protective pad at the surface) and re-installed as a 2-inch diameter monitoring well of sufficient depth to enable purging and sampling with a submersible pump.

In addition, after initial well development some of the groundwater still had a milky appearance. Because of concern that the groundwater might not clear up when the wells were purged before sampling leading to high turbidity in the samples collected for metals analyses, Progressive personnel took the additional time to field filter and collect extra aliquots of filtered groundwater samples from each intermediate well. This ensured that samples could be analyzed for dissolved metals if the total metal analyses resulted in elevated values.

4.1 Determination of Groundwater Flow Directions

Water level data were collected from all of the available wells on June 25, 2014. Figures 4 through 6 show the directions of groundwater flow estimated for each zone of the aquifer. The general direction of shallow perched groundwater appears to be to the northwest toward the western end of the main manufacturing building. The general direction of groundwater flow in the intermediate and deeper zones is westward with relatively low gradients. Because of the limited number of wells in each aquifer zone, it

is difficult to tell whether the flow is directly westward or whether it is more toward the southwest or northwest.

4.2 **Summary of Groundwater Quality**

Preliminary analytical data were received from the laboratory on July 8, 2014, with final laboratory analytical reports being received July 8 through 17, 2014. Figure 7 illustrates the VOCs of concern detected in each well. The results were as follows:

- The perched zone reported only minor VOC impacts near the main manufacturing building. The previously installed EW-1 and EW-2 did not show any VOCs to be detected.
- In the intermediate zone (30 to 35 ft bls) low level VOC impacts were seen in several locations, including MW-8 (near the southwest corner of the building) and MW-4 (near the rail spur), where contamination had been reported at higher levels previously.
- VOC impacts were also confirmed in the underlying 50 ft zone, with the greatest impacts being reported from DW-2 along the southwestern side of the main manufacturing building. This well contained 310 ug/L of tetrachloroethene (PCE), which is just above the natural attenuation default concentration (NADC) of 300 ug/L. The deep well near the rail spur reported only low levels of several VOCs with PCE at 8.6 ug/L.

Based upon the presence of much higher concentrations of contaminants in the 50 ft zone when compared to the 35 ft and 10 ft zone wells near the manufacturing building, it appears that the source of the contamination in the deeper 50 ft zone at DW-2 reflects migration from a release point at another location on the site, potentially from underneath the building or from the loading docks located east of this part of the building.

Only two wells reported 1,4-dioxane to be detected: DW-2 and MW-5. The concentration in MW-5 near the south side of the site was 7.0 ug/L and the concentration in DW-2 was 1.6 ug/L. The groundwater cleanup target level (GCTL) for this compound is 3.2 ug/L. Based upon the different contaminants detected in MW-5 compared to the other wells, the lack of detection of 1,4-dioxane at higher levels in any of the other wells, and the uncertainty in groundwater flow direction, it is possible that the 1,4-dioxane detection in MW-5 may not reflect an on-site release of this compound. We would recommend that the direction of groundwater flow in the 35 ft zone be more closely determined before any conclusion is drawn as to whether the 1,4-dioxane is attributable to the site or to an upgradient off-site source.

Low levels of several trihalomethane compounds (bromodichloromethane, dibromochloromethane, and chloroform) were detected in several groundwater samples. Trihalomethanes are formed as by-product of chlorination of potable water, thus they likely resulted from the potable water used in the sonic coring process. They are not considered to be site-related VOC constituents of concern.

Concern the only total metal analyses that were above any GCTL were boron in MW-6 (near the former tin-plating building where caustic soda and fluoroboric acid were previously used) and aluminum in several wells. In order to confirm that the aluminum was not a site-related constituent of concern, filtered samples were analyzed. The dissolved aluminum analyses were similar in concentration and were only slightly above the secondary GCTL of 200 ug/L for this metal. Therefore, we conclude that the elevated aluminum was a function of turbidity in the samples, aluminum naturally occurs at this site at relatively low concentrations close to the GCTL, and it is not a site-related constituent of concern in groundwater.

Boron is very soluble, so filtering of samples and analysis for dissolved boron was not done. It appears that the elevated boron in MW-6 is related to the former use of fluoroboric acid in the adjacent tin-plating building. Its occurrence above the GCTL appears to be limited to this area as concentrations of boron are not elevated in any of the other groundwater samples analyzed.

5.0 EVALUATION OF RESULTS OF INVESTIGATION

Progressive discussed our initial findings/conclusions regarding site conditions with the City on July 9, 2014, and generalized cost estimates for "best and worst case" scenarios to complete the assessment and cleanup of the site were provided via e-mail on July 18, 2014 (Attachment E). This report summarizes the work performed and Progressive's evaluation of the significance of the environmental impacts found, recommendations for next steps, and a brief description of the most likely remedial approaches for groundwater.

5.1 Recommended Next Steps

Review of historical documents indicated that some soils at the site may be impacted from historical operations on the property, but groundwater issues were considered to be a more likely controlling factor for any remedial options because the main contaminants of concern identified at the site were chlorinated volatile organic compounds, which tend to sink in an aquifer, and the upper portion of the Floridan Aquifer is present in the shallow subsurface beneath the site.

In general, with the exception of the area around DW-2, most of the site does not appear to have significantly elevated concentrations of groundwater contamination. The depth of contamination at DW-2 and the lack of greater contamination at shallower depths above it, however, suggests that the likely release point does not coincide exactly with the well location. Thus, there could be one or more areas of the site that have higher groundwater contaminant concentrations.

The recommended next steps in investigation would be to determine whether the concentration of contaminants in the 50 ft aquifer zone are decreasing or increasing downgradient from DW-2, to further refine the direction of groundwater flow in this zone of the aquifer, and to determine whether contamination extends below the 50 ft aquifer zone to any significant extent. Once this information is known, any further investigations would be based upon the need to identify potential source areas and delineate the full extent of contamination.

If the contamination has not migrated any deeper than the 50 ft aquifer zone, and if DW-2 reflects the highest concentrations observed on-site, natural attenuation monitoring (NAM) is an option that could be pursued. This is a relatively low-cost option, but it will take a longer period of time to achieve closure criteria than if the source is actively treated. Alternatively, the City could consider more active remediation of the source area(s) followed by NAM.

6.0 REFERENCES

- Conestoga Rovers & Associates, Inc. (CRA), 2013. Site Assessment Workplan, Former National Linen Service, 1919 East Paris Street, Tampa, Hillsborough County, prepared for the Florida Department of Environmental Protection (dated December 2013).
- IT Corporation, 1997. Final Site Investigation Report, Seminole Heights Solvent Site, Tampa, FL, prepared for the Florida Department of Environmental Protection Site Investigation Section (dated May 1997).
- Lagos & Associates, Inc., 1994. Environmental Assessment, General Cable Company Facility (dated June 1994).
- PES Associates, 2011. Limited Subsurface Investigation, Electrical Machine Enterprises, 2515 East Hanna Avenue, Tampa, FL 33610 (dated June 16, 2011).
- Pilko & Associates, Inc., 1994. Workplan for the Site at 2515 East Hanna Avenue, Tampa, Florida, prepared for General Cable Corporation (dated November 1994).
- Pilko & Associates, Inc., 1996. Field Investigation of Tampa, Florida, Site prepared for General Cable Corporation (dated February 13, 1996).
- PSI, 2008. Groundwater Well Sampling and Analysis, Seminole Heights Solvent Study, 1919 East Paris Street, Tampa, Hillsborough County, Florida prepared for the Florida Department of Environmental Protection (dated June 24, 2008).

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

TABLES

Table 1. Well Construction Details and Groundwater Elevation Summary, Former General Cable Facility, Tampa, FL

Well ID:	SV	SW-1 EW-1		EW-2		MW-4		MW-5		MW-6		MW-7		MW-8		DW-1		DW-2			
Diameter (in):	2	2	2		2		1		2		2		2		2		2		2		
Depth (ft):	1	0	12.9		9.7		30 (28.6)		35		35		35		35		50		50		
Screen Interval (ft):	2-	10	unk -	12.9	unk	- 9.7 20-3		-30	25	-35	26-35		25-35		19-34		45-50		45-50		
TOC Elevation (ft amsl):	54	.94	54.33		54.80		52.55		56	56.81		51.98		51.88		54.8		52.4		55.04	
Land Elevation (ft amsl):	54	54.7 54.33		54.80 5		52	2.4	56	.81	51.98		51,88		54.7		52.4		54.9			
Date Measured	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	
6/25/2014	3.75	51.19	2.71	51.62	3.10	51.70			29.20	27.61	24.33	27.65	23.73	28.15	4.43	50.37	24.62	27.78			
6/26/2014							25.06	27.49											27.47	27.57	

Notes:

in - inches.

ft - feet.

ft amsl - feet above mean sea level.

TOC - top of casing.

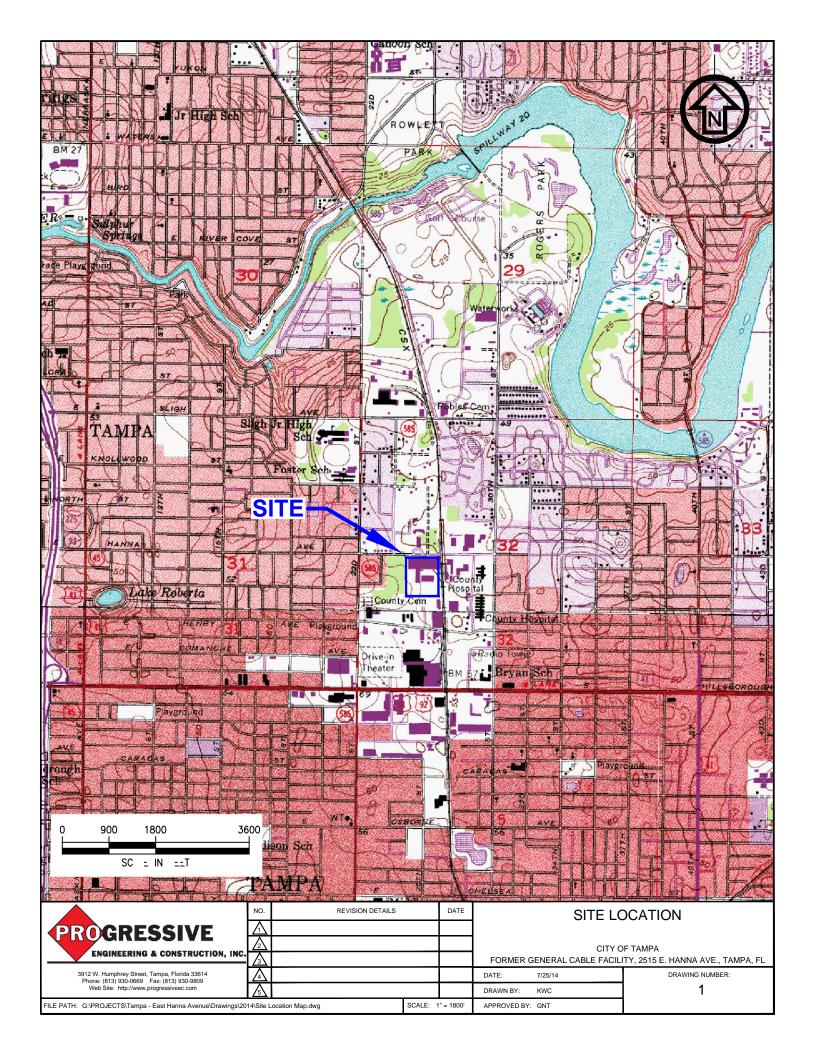
DTW - depth to water, measured from top of casing.

WTE - water table elevation.

unk - upper depth of well screen is unknown.

Table 2. Groundwater Analytical Summary, Former General Cable Facility, Tampa, FL

	Sample ID	SW-1	EW-1	EW-2	MW-4	MW-5	MW-6	MW-7	MW-8	DW-1	DW-2
	Sample Date	6/25/2014	6/25/2014	6/25/2014	6/26/2014	6/25/2014	6/25/2014	6/25/2014	6/25/2014	6/25/2014	6/25/2014
Volatile Organic Compounds (ug/L) ¹	GCTL (ug/L)										
Tricholoroethene	3	0.2 J	<1.0	<1.0	<1.0	0.2 J	2.2	<1.0	2.7	3	70
Tetracholoroethene	3	0.7 J	<1.0	<1.0	20	<1.0	0.5 J	1	2.8	8.6	310 D
Cis-1,2-Dichloroethene	70	<1.0	<1.0	<1.0	<1.0	<1.0	3	<1.0	<1.0	<1.0	25
Trans-1,2-Dichloroethene	100	<1.0	<1.0	<1.0	<1.0	<1.0	0.4 J	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	7	<1.0	<1.0	<1.0	<1.0	2.8	<1.0	<1.0	<1.0	<1.0	0.6 J
1,1-Dichloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.8 J	<1.0
1,4-Dioxane	3.2					7.0	<1.0	<1.0	< 0.5	< 0.5	1.6
Benzene	1	<1.0	<1.0	<1.0	<1.0	0.5 J	<1.0	<1.0	<1.0	<1.0	<1.0
2-Butanone (MEK)	4200	<10	<10	<10	<10	25	<10	<10	<10	<10	<10
Semi-Volatile Organic Compounds 1											
In-Organic Compounds ¹											
Aluminum (dissolved)	200	246				275	202	322	283		
Aluminum (total)	200 ²	1550				1860	275	339	343		
Barium	2000	30.3				21.9	26.6	12.7	7.88		
Boron	1400	111				86.6	1760	109	88.5		
Cadmium	5	0.263 J				0.778 J	< 0.170	< 0.170	0.521 J		
Lead	15	3.65 J				2.78 J	<2.20	<2.20	<2.20		
Sodium	160000	6560				13800	12900	5250	13400		
Tin	4200	5.92 J				<5.40	6.23 J	<5.40	<5.40		
Mercury	2	0.109 J				0.0367 J	< 0.0230	< 0.0230	< 0.0230		
Fluoride	2000					0.28	0.24	0.35	0.5 J		

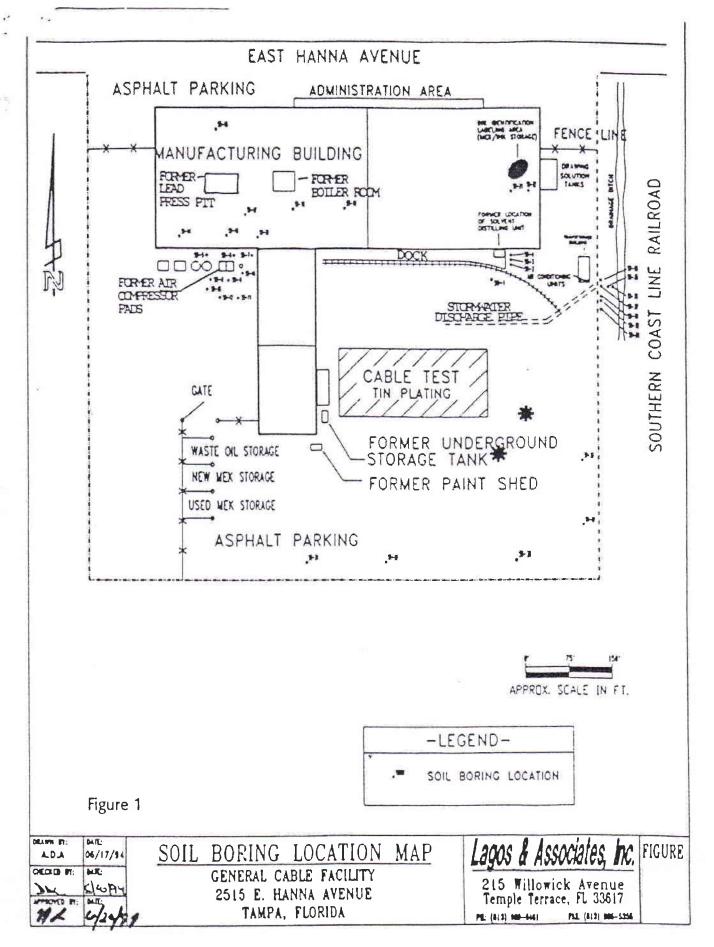
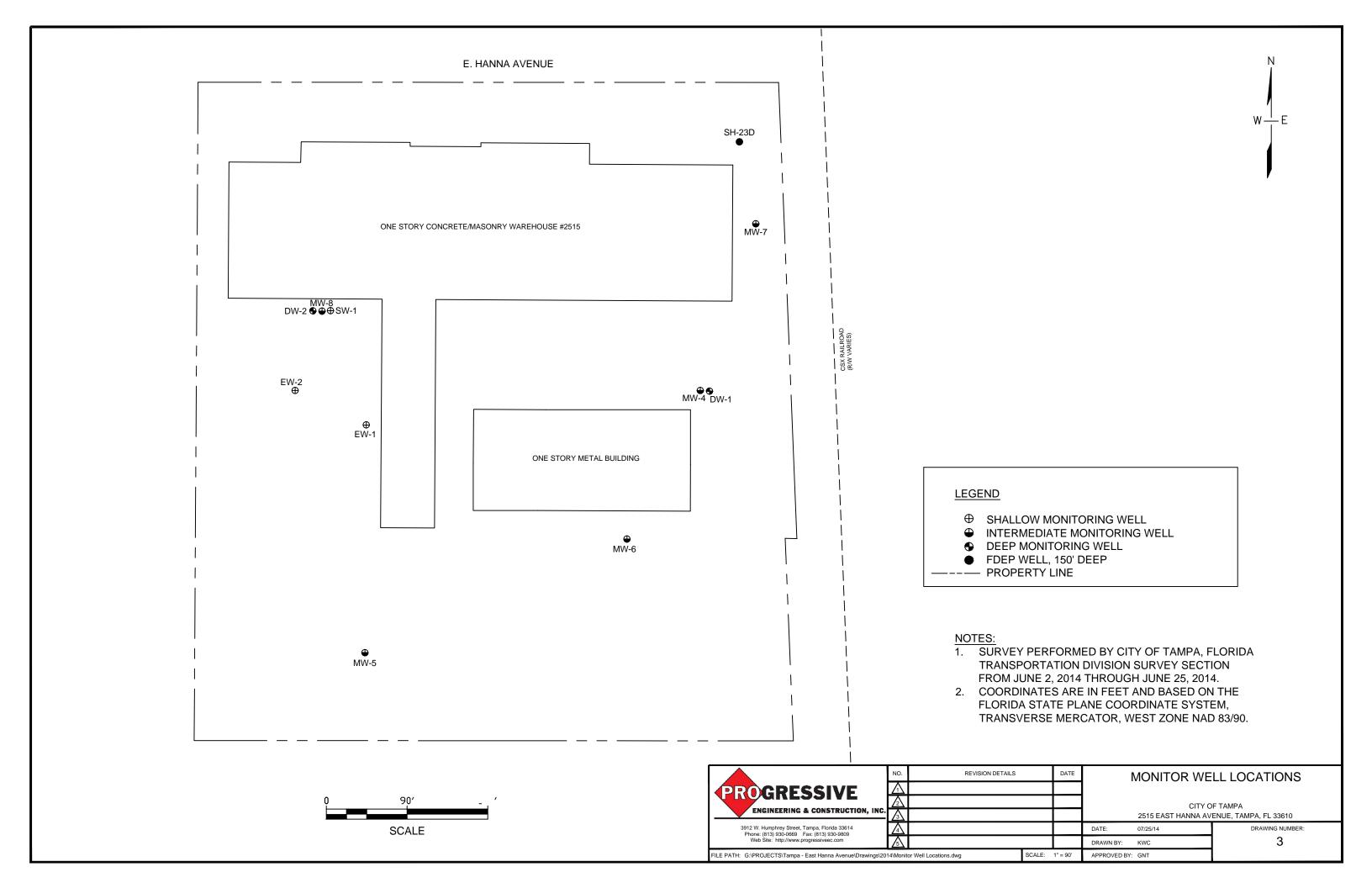
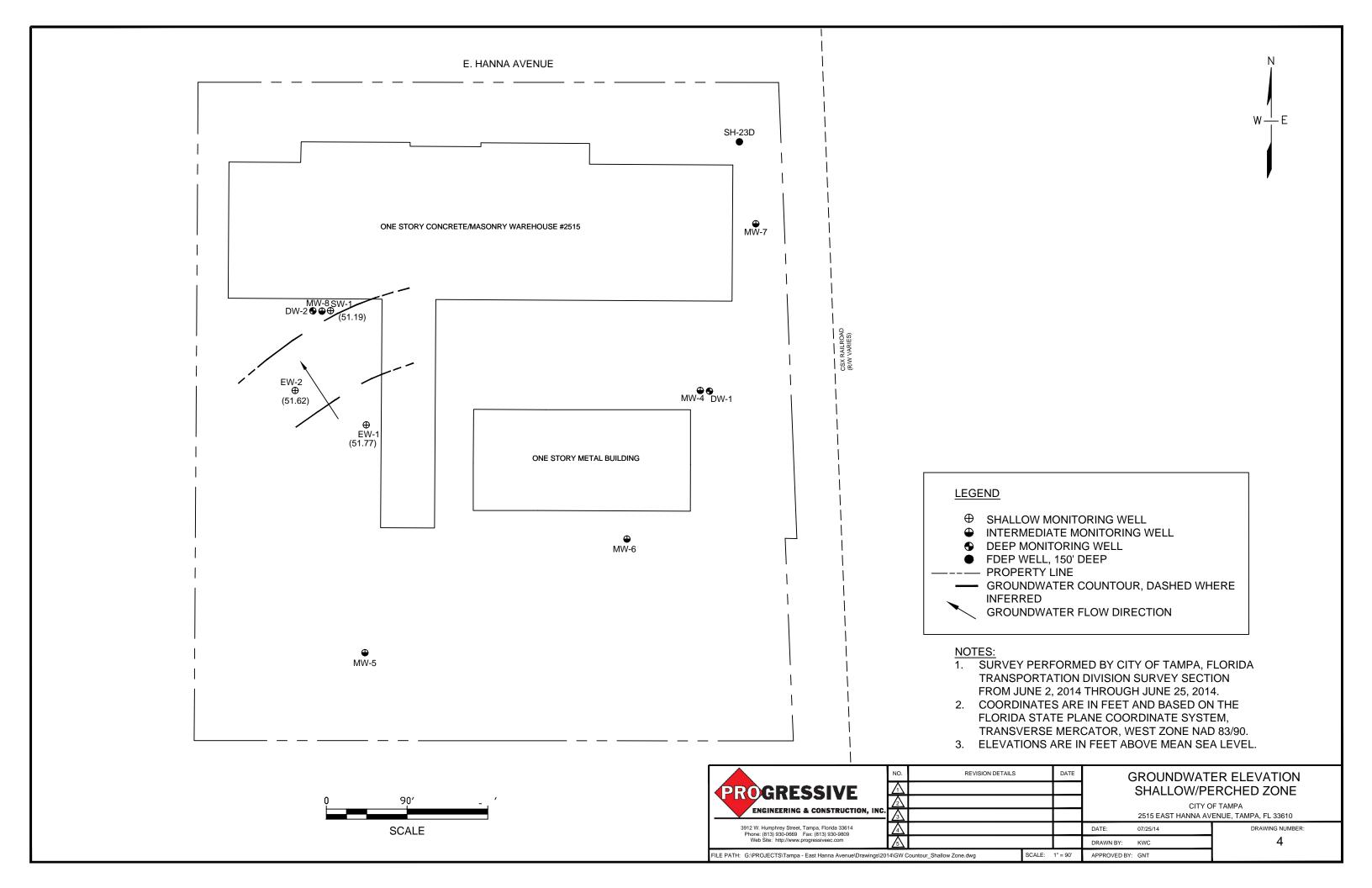
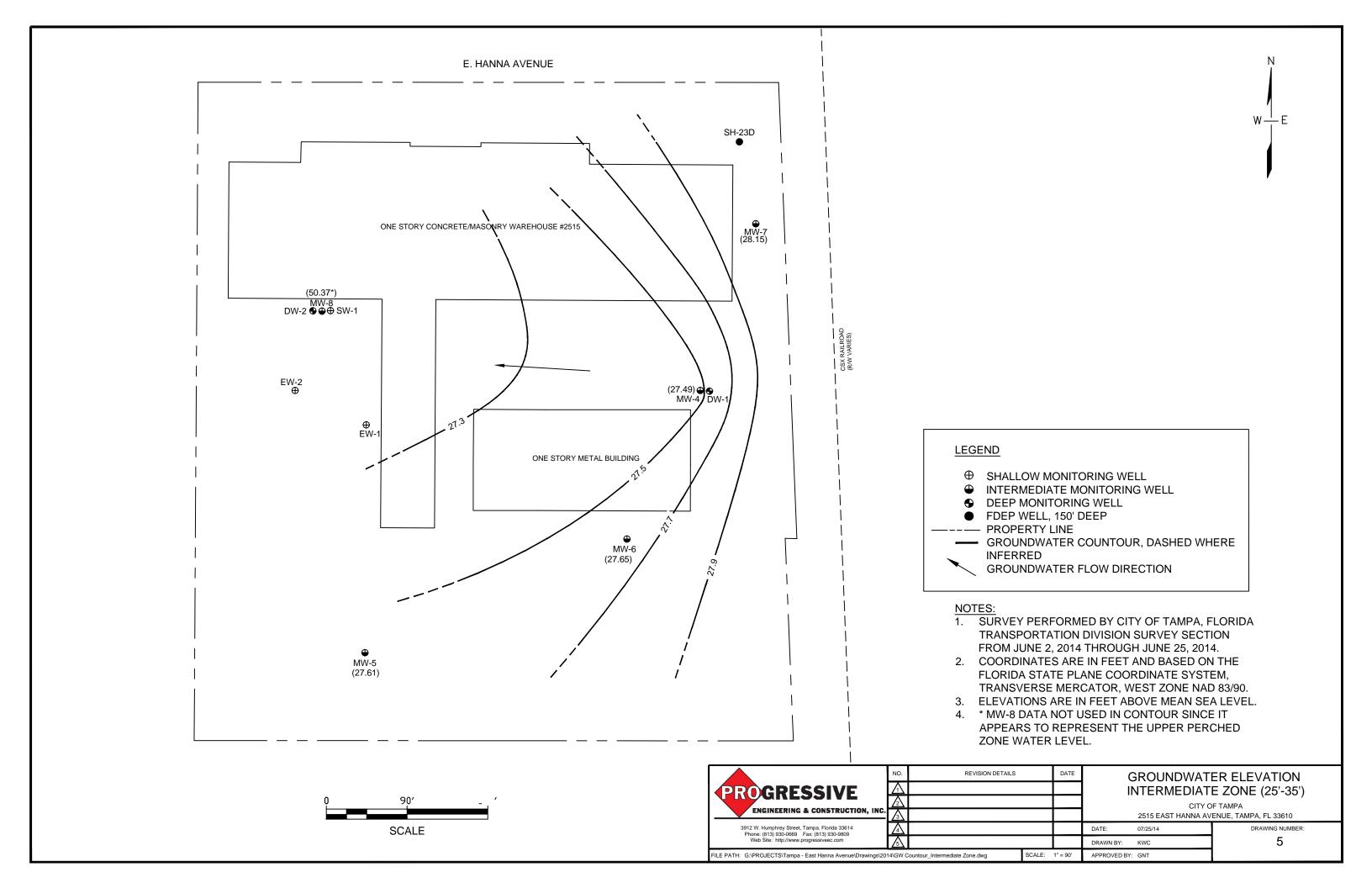
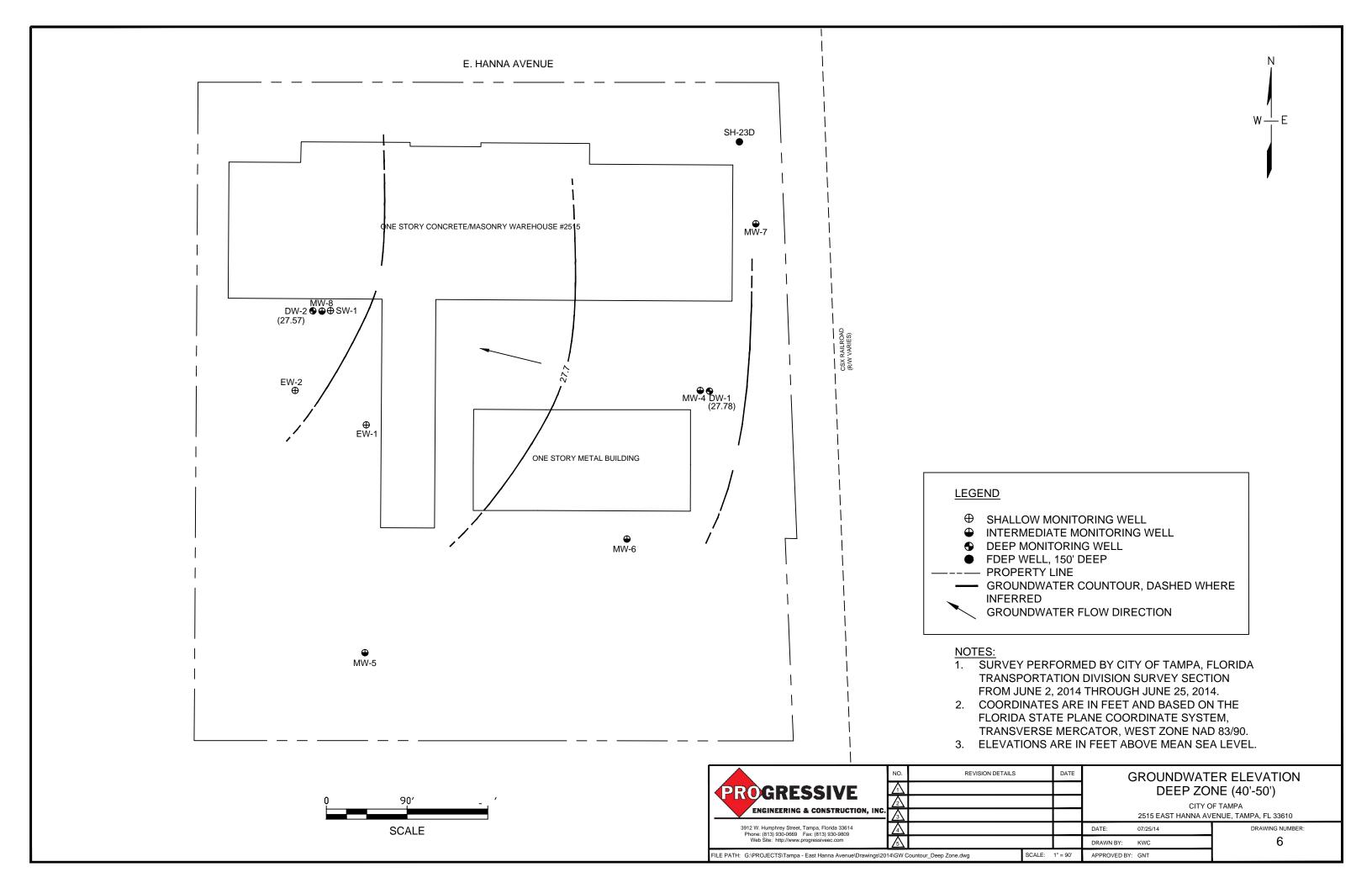

Notes:

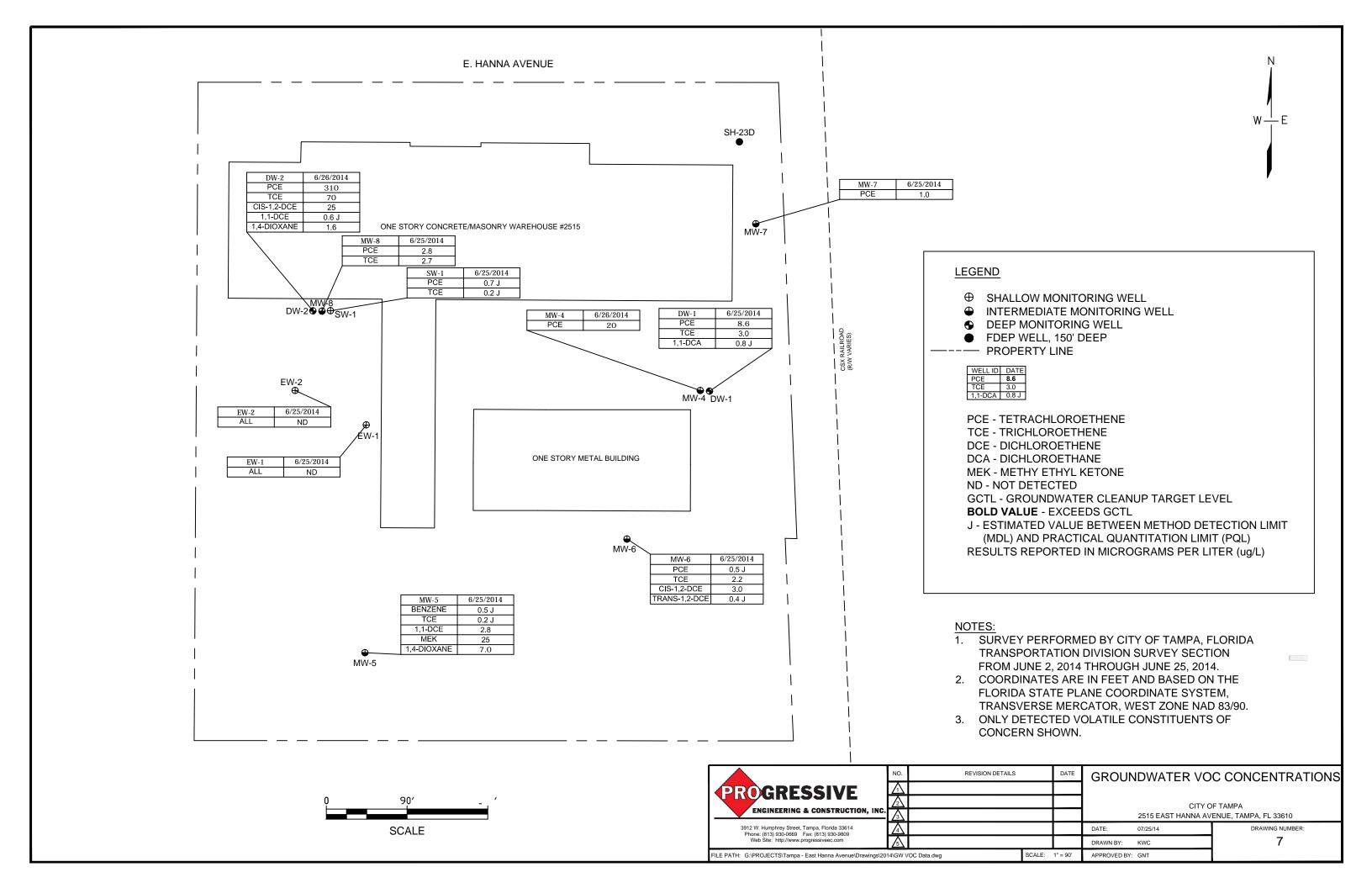
- ug/L micrograms per liter.
- GCTL Florida Department of Environmental Protection Groundwater Cleanup Target Level.
 - < Compound was not detected, numerical value is the limit of detection for that compound.
 - J Estimated value between the Method Detection Limit and the Practical Quantitation Limit flagged by the laboratory using an "I".
 - D Data reported from a dilution or multiple dilutions.
 - -- sample was not analyzed for this compound.
- **BOLD** Bold value indicates a result above the GCTL.
 - ¹ Only compounds of concern detected in at least one sample are presented herein, unabridged data are presented in the lab reports. All results were non-detect for semi-volatile organic compounds, TCLP, and ethylene glycol, see lab reports.
 - Low levels of trihalomethanes were detected in several samples, but are not considered to be site-related compounds of concern.

² Aluminum GCTL is based upon organoleptic concentrations.

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

FIGURES


Figure 2: Lagos & Associates, Inc. Figure from Pilko & Associates, Inc. (1994)

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

ATTACHMENT A

Well Construction Diagrams/Boring Logs

	•	B	ORIN	IG LO	and ف	WELL CONSTRUCTION DETAIL	Page 1 of 1
4	ROGRE	ESSIVE ng & construct				Boring/Well ID: MW-5	
PROJE	CT: City of	Tampa				LOCATION: 2515 E Hanna Ave, Tampa, FL	
PROJE	CT NO: P23	324				SURFACE ELEVATION: 56.81	
	STARTED: 6					TOC ELEVATION: 56.81	
	INISHED: 6					DEPTH TO WATER: 29.20	
	NG METHO					TOTAL DEPTH: 34.80	
DRILLIN	NG COMPAI	NY: Casca	_	ng		SUPERVISOR: Nichols	
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
				2.3		post hole 0-5 ft	1 1 1
				2.3		It brown SAND	
				2.3			
l _—			•	2.3		-	
5			<u> </u>	2.3		-	
			-	2.3		-	
_			-	4.5		-	
						moist/wet to 9 ft v stiff gray CLAY	
10				5.3/6.5		v stiff gray CLAY, more orange with depth	
				11.1		Wet SAND at 10 ft (perched aquifer) OVA Low	
				5.7		, , , , , , , , , , , , , , , , , , ,	Grout
				0.5		gray CLAY with trace limestone	
				5.5		Mixed orange with gray CLAY; breaks up with some Is	
15				7.0		orange & gray CLAY mixed; limerock pieces	
				22.3			
_				5.3		Charles Ol AVendels white I	
				10.8/16.3		gray CLAY; with white limerocks trace sand	
20			-	7.2		white - sandy - trace clay, rock pieces gray, more clay - sand - rock pieces	
20				7.4 4.5		stiff gray CLAY	
				1.7		gray with white CLAY breaks up - sand and rocks	
				4.8		1	bent
				5.9		1	
25				6.9			
				8.6		It brown - sandy with some rocks	T plant
				8.6		_	2 # E
				8.1		white broken up limerack down	23-35
30			-	4.5 2.1/1.6		white - broken up limerock, damp white - broken up limerock, dry	
30				1.6		white - broken up innerock, dry white/sticky MARL/LIMESTONE - some rock pieces	sand
				1.6		wet	
				1.7		1	20/30
				1.7			
35				1.7	-		
						TD = 35 ft.	2" diameter well
_							4
							4
40							-
40							1
_			1				1
							1
45							1
							bent = bentonite
₅₀ —							4
50	DY		77.4 -		ee e	lit Spoon; ST = Shelby Tube; DP = Direct Push; SC = Sonic Core; I	

		В	BORIN	IG LO	G and	WELL CONSTRUCTION DETAIL	Page 1 of 1
•	ROGRE	ESSIVE NG & CONSTRUCT				Boring/Well ID: MW-6	
PROJE	CT: City of	Tampa				LOCATION: 2515 E Hanna Ave, Tampa, FL	
	CT NO: P23					SURFACE ELEVATION: 51.98	
DATE S	TARTED: 6	6/16/14				TOC ELEVATION: 51.98	
DATE F	INISHED: 6	/16/14				DEPTH TO WATER: 24.33	
DRILLIN	NG METHO	D: Sonic				TOTAL DEPTH: 34.60	
DRILLIN	NG COMPAI	NY: Casca	de Drilli	ing		SUPERVISOR: Nichols	
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
_						dk brown fine SAND dk brown fine SAND sandy CLAY - turning gray gray CLAY, some small to med. SAND (white)	
5 —				0.0		gray CLAY (dark gray)	
				0.0		lt. med. brown CLAY, small trace med. SAND	
10				0.0		lt. med. gray CLAY, some SAND dense, gray CLAY	
10			-	0.0 18.5		It. med. brown CLAY w/ SAND, limerock pieces	
_				13.4		It. med. brown CLAY - trace med. SAND	Grout
				13.2			
				10.0			
15				11.9			
_				10.2		-	
<u> </u>				6.5 7.9			
_				26.5		-	
20			- (30.6 (12.9)		
				26.9		LIMESTONE/marl starts ≈ 20ft.	
_				17.1		white marl with limerock pieces	bent
_				0.0		wet 21-22'	<u> </u>
25				0.0		-	
20				0.0		-	Sic
_				0.0			4
				0.0			23-35 ft bls
I				0.0	-		
30				0.0			20/30 sand
-			-	0.0		-) Signature of the state of the
-			-	0.0		-) (8/2)
-				0.0		-	Ď
35				0.0		1	
						TD = 35 ft.	2" diameter well
_							4
_							-
40							1
]
_							4
45							bent = bentonite
]
_							
_							-
50			-				1
	rma Cadage DI		U A _ T	Iand Auga	CC _ C	lit Cnoon, ST - Challey Tubo, DD - Direct Duch, SC - Conic Core, D	C - Drill Cuttings

 $\label{eq:moisture Content Codes: } \mathbf{D} = \mathrm{Dry}; \quad \mathbf{M} = \mathrm{Moist}; \quad \mathbf{W} = \mathrm{Wet}; \quad \mathbf{S} = Saturated$

BORING LOG and WELL CONSTRUCTION DETAIL											
4	ROGRE	ESSIVE ng & construct				Boring/Well ID: MW-7					
PROJECT DATE S	CT: City of CT NO: P23 CTARTED: 6	324 5/17/14				LOCATION: 2515 E Hanna Ave, Tampa, FL SURFACE ELEVATION: 51.88 TOC ELEVATION: 51.88 DEPTH TO WATER: 23.73					
	NG METHO					TOTAL DEPTH: 35					
DRILLIN	NG COMPAI	NY: Casca	de Drilli	ing		SUPERVISOR: Nichols					
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM				
						Concrete at surface					
l —						It. to med. brown silty SAND fine grained,					
<u> </u>				2.1		inte grained,					
5				4.6/5.8		med. brown to orange fine SAND/some plastic-silt					
				6.3		med. brown SAND - clay pieces, limerock pieces ≈ 1 cm.					
l —				8.7 6.1		med. brown - orange, fine SAND/silt					
l —				6.3		It. brown fine SAND					
10				4/3.9		lt. brown/orange fine grained SAND					
							Grout				
l —				5.9		lt. brown SAND - transition to orange	<u> </u>				
-				8.7		transition to gray CLAY					
15						and the second s					
				12.6		gray CLAY					
l <u> </u>											
l —				20.0							
20				25.2							
				6.6		wet at 20'; w/limestone pieces					
l <u> </u>				8.3		LIMESTONE - marl	bent				
l —				27.3 15.1							
25				26.4		24-25' dry					
				20.3		wet again @ 26'	sig				
l <u> </u>				16.3			35 ft				
				27.7 37.6			20/30 sand 23-35 ft bls				
30				42.6			pu				
	-			18.0			Sa Sa				
-				13.9			08/30				
				27.4 26.2							
35				26.4							
						TD = 35 ft.	2" diameter well				
I —							-				
40]				
							-				
							1				
45							bent = bentonite				
-											
							1				
50											

 $\label{eq:moisture Content Codes: } \mathbf{D} = \mathrm{Dry}; \quad \mathbf{M} = \mathrm{Moist}; \quad \mathbf{W} = \mathrm{Wet}; \quad \mathbf{S} = \mathrm{Saturated}$

1			OKII	IG LU	e and	WELL CONSTRUCTION DETAIL	Page 1 of 1
4	ROGRE	SSIVE		7		Boring/Well ID: MW-8	
PROJEC	CT: City of	Гатра				LOCATION: 2515 E Hanna Ave, Tampa, FL	-
PROJE(CT NO: P23	324				SURFACE ELEVATION: 54.0	
DATE S	TARTED: 6	6/18/14				TOC ELEVATION: 54.80	
	INISHED: 6					DEPTH TO WATER: 4.43	
	IG METHO					TOTAL DEPTH: 33.30	
DRILLIN	IG COMPAI	VY: Casca	de Drill	ng		SUPERVISOR: Nichols	
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
				1.7		dk. brown fine SAND	
				2.0		lt./med. SAND - some plastic fine grain friable	
				2.0			
				2.0		lt. brown SAND - larger grain, stil some fine grained	
5				2.0/6.3		lt./v. lt. fine SAND - wet (perched water table probably present here)	
				8.7		med. brown fine SAND	
				0.0			
				19.2			
				12.6			
10				10.3		dense gray CLAY starts @ 10'	Grout
_				0.0		CLAY - shell - sand lt. brown	
_				9.1		Sandy CLAY - It. brown	
_				11.5		dry	
			-	5.7			
15			-	4.5		Identica every CLAV as the CANID	
_				5.1		dense gray CLAY - some SAND	
_				2.1			
_				0.6		O.F. & CLAV LOF & Umagatama lange	
20				0.0		0.5 ft. CLAY + 0.5 ft. limestone lense	pent
20			-	0.0		dense gray CLAY and some sand and limestone	•
_			-	5.8		dense gray CLAY	
_				15.1 18.0		-	
_				13.3		-	(n)
25				8.2			ft bls
				2.9		1	ا ا ا
_				3.5		CLAY w/some limestone	- 23-38
			1	4.2		brown - med. CLAY w/limestone	
				5.1		dense blue CLAY	
30				2.4/9.0		med. Brown CLAY w/ limestone	20/30 sand
				5.4		dense blue CLAY) () ()
	-			10.6			
	-	-		21.0	·		
				23.8			
35				43.5		increasing PID was of concern	
						TD = 35 ft.	2" diameter well
							_
4.2			-				4
40							4
_							-
_	+						-
_			-				-
ΛE							hant - hantanita
45							bent = bentonite
_							-
_			-			-	
_			-				1
50							1
	C I DI	I D4 II-l	. IIA T	I J A	CC C-	lit Spoon; $ST = Shelby Tube$; $DP = Direct Push$; $SC = Sonic Core$; I	C Dill C w

G	ROGRE	ESSIVE				Boring/Well ID: DW-1	
PRO IE	CT: City of					LOCATION: 2515 E Hanna Ave, Tampa, FL	
	CT NO: P2					SURFACE ELEVATION: 52.40	
	TARTED: 6					TOC ELEVATION: 52.40	
	INISHED: 6					DEPTH TO WATER: 24.62	
	IG METHO					TOTAL DEPTH: 49.60	
	IG COMPAI		de Drill	ing		SUPERVISOR: Nichols	
	Zω		. >		S		
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
_				0-1.5		dark to light brown SAND/silty SAND	
-				"		moist @ 3'	
				"			
5				6.4		- 	
J				10.7		med. brown fine grained SAND	
-				15.3		dark brown fine grained SAND	
-				19.4		dark brown fine SAND w/small clay pieces (<1 cm)	
				7.4		It. brown fine SAND (no plasticity)	
10				1.5/10.7		<u> </u>	
				16.0		orange silty SAND	
_							
				10.3			
15						and house and areas and OLAV also the frields	
				8.5		med. brown and orange sandy CLAY, plastic, friable	
_				15.0		light/med. Sandy CLAY, friable	
						limestone/marl	
20				24.7/17.0		It. brown to white - weathered limestone, moist	5
_				20.5 17.7		white weathered LIMESTONE/MARL	Grout
-				3.2		wet @ 23'	
-				5.8			
25				8.7			
				9.8		7	
				11.5			
	<u>- </u>			5.2]	
				3.0		<u> </u>	
30			ļ	3.7/6.5		<u> </u>	
_				30.6			
_				19.3		-	
-				20.6 6.1		- I	
35				13.9		- I	
50				29.7		 	
-				7.7		- 	
				6.0		1	
				17.2]	
40				10.3	-	<u> </u>	
						41-46' weathered limerock v. stiff - white - v. few stones weathered limerock	bentd
45						-	
٠.٠						†	20/30 sand
\dashv						med./lt. limerock - no marl	Š
_						light to med limerock - darker w/depth	Ď(Š)
			1	l		╡ ⁻ '	
		<u></u>		<u> </u>			

 $Sample \ Type \ Codes: \ \textbf{PH} = Post \ Hole; \ \textbf{HA} = Hand \ Auger; \ \textbf{SS} = Split \ Spoon; \ \textbf{ST} = Shelby \ Tube; \ \textbf{DP} = Direct \ Push; \ \textbf{SC} = Sonic \ Core; \ \textbf{DC} = Drill \ Cuttings \ Property \ Property$

•	ROGRE	ESSIVE				Boring/Well ID: DW-2	
PRO.IF	CT: City of					LOCATION: 2515 E Hanna Ave, Tampa, FL	
	CT NO: P2					SURFACE ELEVATION: 54.90	
	STARTED: 6					TOC ELEVATION: 55.04	
	FINISHED: 6					DEPTH TO WATER: 27.47	
	NG METHOI					TOTAL DEPTH: 50.40	
DRILLII	NG COMPA	NY: Casca	de Drill	ing		SUPERVISOR: Nichols	
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
_						12" concrete	
_				<3		med. brown, silty SAND light to medium brown and orange sand mixed, wet	
_				<3 <3		light to medium brown and orange sand mixed, wet	
5				<3			
				6.15		light to medium brown fine SAND	
	1			10.6		- ~	
_				6.1]	
	0 6.0					<u> </u>	
10				5.1/			
				5.5		light brown clayey SAND, wet	
_				11.2			
_				19.9 6.6		less wet	
15				17.3		white, LIMESTONE, some marl, dry	
10				20.0		Willie, Elivico Forte, some main, ary	
				24.4			
_				26.3			
				24.9		White, increased marl, less limestone fragments	
20				12.8			
				14.5			Grout
				20.5			Ō
_				15.2 19.7		gray and orange CLAY	
25				14.2		gray and Grange GEAT	
				9.1		-	
				15.5		blue CLAY (Hawthorn) w/stones	
				7.6		w/ some shells	
				17.7			
30				9.4/16.9		<u> </u>	
_				32.2		_	
_	1			41.2		-	
	-			66.5 65.4		-	
35				152.8		-	
				134.4		- I	
				89.9		1	
_				46.6]	
				135.4		_	
40				246.6/4.4		AA 5 Avensitions to white Providence of	
_				22.3		41.5 transitions to white limestone and marl	
_	1			12.9		-	bento
				23.4 19.2		-	
45				19.2		- I	
				2.6		- I	20/30 sand
				12.5		- 	ıš 📗
	1			13.2		1) <u>(</u>
_				10.7			<u>×</u>
							# 1555 156 F 1565 1565 1565 1565 1565 1565 1565 15

			BORI	NG LO	and \	WELL CO	DNSTRUCTION DETAIL	Page 1 of 1					
•	ROGRE	ESSIVE NG & CONSTRUCT	FION. INC.				Boring/Well ID: SW-1						
PROJE	CT: City of	Tampa					LOCATION: 2515 E Hanna Ave, Tampa,	FL					
PROJE	CT NO: P23	324					SURFACE ELEVATION: 54.7						
DATE S	STARTED: 6	6/18/14					TOC ELEVATION: 54.94						
DATE F	INISHED: 6	/18/14					DEPTH TO WATER: 3.75						
DRILLIN	NG METHO	D: Sonic					TOTAL DEPTH: 9.55						
DRILLIN	NG COMPAI	NY: Casca	de Drilli	ng			SUPERVISOR: Nichols						
	7 0		. >		S								
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM					
				2.6 7.4		0-4" concre fine, silty Sa @ 3.5' PID	AND	pe ga					
5				4.7 7.0 9.7/26.6		@4.5' PID :	= 7.0	gand					
_				498.0 21.0		=		20/30 sand					
1 -				65.0		1							
10				75.0		†							
								2-inch diameter well					
15													
								bent = bentonite					
								gr = grout					
20													
_													
25													
_													
30								_					
35													
_								_					
40													
-													
								_					
45													
								_					
						1							
50						-							
					~~		Shalby Tube: DP - Direct Dush: SC - Sonia Core.						

Sample Type Codes: PH = Post Hole; HA = Hand Auger; SS = Split Spoon; ST = Shelby Tube; DP = Direct Push; SC = Sonic Core; DC = Drill Cuttings Moisture Content Codes: <math>D = Dry; M = Moist; W = Wet; S = Saturated

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

ATTACHMENT B

Photo Documentation of Well Installations

MW-4 – Completed by Others

MW-5 Installation

MW-6 Well Pad – Completed

MW-7 Well Pad – Completed

MW-8 Installation

SW-1 Well Pad – Completed

DW-1 Well Pad – Completed

DW-2 Well Pad – Completed

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

ATTACHMENT C

Groundwater Sampling Logs

WELL NO:	DW-1		DATE: 6	26/14	SAMPLE ID:	2-w		PROJECT NO:	P2324		
SITE NAME:	Ch	L y of Tam				SITE LOCATION	ON: 2<15	E Ham	. A.	Tanks	P.
		1 00 1 11			PURGIN	IG DATA	2313	C Plante		1000	
WELL		TUBING	-		NINTERVAL DEPTH	STATIC DEPT	TH and the	TOTAL 56	PURGE PUM		
DIAMETER (ii WELL VOLUI	man to be about the second	Control of the Contro			5 feet TIC DEPTH TO WATER)		eet): 27.4°	DEPTH: 24	OR BAILER		
(only fill out if	applicable)			= (5	6 feet –	27. 47	feet) >	colb ga	allons/foot =	3.6	gallon
INITIAL PUMF	OR TUBING	NA	FINAL PUMP	OR TUBING	NA	PURGING	0.05	PURGING	Q to	TOTAL VOLU	
DEPTH IN WI	ELL (feet):	1414	DEPTH IN W	ELL (feet):	1012	INITIATED AT	755	ENDED AT:	246	PURGED (gal	lons): 4.0
	VOLUME	CUMUL. VOLUME	PURGE RATE	DEPTH TO	рН	COND.	TURBIDITY	CIMONI OF %	TEMP	ORP	
TOME	PURGED	PURGED	(gpm or	WATER	(standard units)	(μS/cm)	(NTUs)	saturation)	(°C)	(mV)	COLOR/ ODO
TIME	(gallons)	(gallons)	ml/min)	(feet)	(± 0.1 units)	<u>(+</u> 3%)	(<u>+</u> 10%)	(<u>+</u> 10%)	(± 1 °C)	(<u>+</u> 19 mV)	(describe)
650	-				7.42	421.0		1.08	01.1	- 27.6	cluby /
								-		1	
			1		707						
									1		
VELL CAPAC	ITY (Gallons Pe	er Foot): 0.75" =	$0.02; 1^n = 0.$	04; 1.25" = 0.	.06; 2" = 0.16; 3" = 0		5; 5" = 1.02;	6" = 1,47; 8" = 2	.61; 10" =4.0	B; 12" = 5.88	
SAMPLED BY	(PRINT) / AFFI	LIATION:		SAMPLER(S)		O DATA		SAMPLING		SAMPLING	10.
	CN. C	clan		l fa	-/	-		INITIATED AT:	847	ENDED AT:	850
PUMP OR TUI		AN		SAMPLE PUM		NP		TUBING MATERIAL CODE:			
DEPTH IN WE	LL (feet):	NF		FLOW RATE (FIELD FILTER			R SIZE:	micron	NA		
TELD DECON	ITAMINATION:			Filtration Equip		W.*=			DUPLICATE:	Υ	(B)
		AMPLE CONTAIN SPECIFICATION				SAMPLE PRES	SERVATION				
CAMPLE	ID CODE	# of	MATERIAL	VOLUME	PRESERVATIVE USED	TOTA	L VOL	PRIME SAID		O ANALYSIS	SAMPLING EQUIPMENT
SAMPLE		CONTAINERS	CODE	VOLUME	USED	ADDED IN	FIELD (ML)	FINAL pH	AND/OR	METHOD	CODE
REMARKS:											
	6 1										
ATERIAL CO		G = Amber Glass; P = After Peristaltic			Polyethylene; PP = P BP = Bladder Pump;		S = Silicone; Submersible P		ther (Specify)		

WELL NO: PW-2			1. 1.			DW-		PROJECT NO:				
ITE NAME:						SITE LOCATIO	N;	•				
		A		U-V-1-10-0-111-	PURGIN	IG DATA						
VELL		TUBING	ار _{hes):} ا	WELL SCREE		STATIC DEPTI		TOTAL	PURGE PUM		0.6	
NAMETER (in		DIAMETER (incl				TO WATER (fe		DEPTH: 3 50	OR BAILER: 3-5		~~f	
		VELL VOLUME =	(TOTAL WELL	DEPTH - STAT	IC DEPTH TO WATER;	x WELL CAPA	ACITY					
only fill out if a	applicable)	1		= (5	O feet-	27.47	feet) >	(0.16 ga	ilons/foot =	3.6	gallons	
NITIAL PUMP	OR TUBING	1	FINAL PUMP	OR TUBING		PURGING		PURGING		TOTAL VOLU	ME	
EPTH IN WE	LL (feet)		DEPTH IN W	ELL (feet):		INITIATED AT:	625	ENDED AT:	_	PURGED (ga	lons):	
TIME	VOLUME PURGED	CUMUL. VOLUME PURGED	PURGE RATE (gom or	DEPTH TO WATER	pH (standard units)	COND. (μS/cm) (± 3%)	TURBIDITY (NTUs) (± 10%)	OXYGEN (mg/) or % saturation) (± 10%)	TEMP (°C) (±1°C)	ORP (mV) (± 19 mV)	COLOR/ ODOR (describe)	
	(gallons)	(gallons)	ml/min)	(feet)	(<u>+</u> 0.1 units)		(- 1070)	0.28	22.4	-24.3	nem clo	
1635 1640 1645	0.5	0.2	0.1	27.54	7.09	457.2		0.00	CD.)	-61.3	perso / Cla	
1635	05				3							
1640								٨				
HANK							700	1				
1010							٧.	W	1			
						-	74	90				
					-	N M	M .	1	-			
					1	1.0	1	ریزله،	120			
						•		4.2				
							710		01			
	9							1 00				
		-					1				1	
						1	15	w	-		-	
							('					
										0		
		_					7			-		
							1					
						7c						
						(4						
IELL CABACI	ITV (Callons D	r Eooth: 0.75" = 1	0.02: 4" = 0	04: 1.25" = 0		0.37: 4" = 0.6!	5: 5" = 1.02	6" = 1.47: 8"= 2	.61; 10" =4.08	3: 12" = 5.88		
IELL CAPACI	ITT (Gallons Pe	a rooty. 0.75 -	0.02, 1 = 0.	04, 1.20 - 0		NG DATA	, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	101) 10 110	, ,,		
AMPLED BY	(PRINT) / AFFI	LIATION:		SAMPLER(S)		10 DATA		SAMPLING		SAMPLING		
WHI EED DI	(1 1 (11) / / / / / /	LII (III OI II		0, ==(0,				INITIATED AT:		ENDED AT:		
ILAD OD TUE	NINO.			SAMPLE PUM	0			TUBING		An association		
UMP OR TUE					mL per minute);			MATERIAL CODE:				
EPTH IN WEI	LL (feet):			FIELD FILTER		FILTE	R SIZE:	micron				
ELD DE0011	TALULATION	V N		Filtration Equip				_	DUPLICATE:	Y	N	
ELD DECON	TAMINATION:	Y N	ED.	Lavit Equip					DOT LIONIE.		1	
						SAMPLE PRES	SERVATION		V			
		SPECIFICATION			PRESERVATIVE	TOTAL		ř	1		SAMPLING	
CAMPLE	ID OODE	# of	MATERIAL	VOLUME	USED	ADDED IN 8		FINAL pH		D ANALYSIS METHOD	EQUIPMENT	
SAMPLE	ID CODE	CONTAINERS	CODE	VOLUME	0025	ADDED	TELD (IIIL)	PROSE pri	MADION	INCTIOD		
									1			
									1	3		
								L				
		70			H -	11						
EMARKS:												
REMARKS:												
EMARKS;												
EMARKS:												
EMARKS:												
EMARKS;	DES: A	G = Amber Glass;	CG = Clear	Glass; PE=	Polyethylene; PP = F	^o olypropylene;	S = Silicone;	T = Teflon; O = 0	Other (Specify)			

WELL NO:	Mw.4		DATE:	26/14	SAMPLE ID:	w4	10117(1	PROJECT NO:	C 7	324	
SITE NAME:	(.)	\$ 1.	mpa			SITE LOCATION	ON: 25	5 E H.	una De		- 61
	- O-1	<i>y</i> (,			PURGIN	IG DATA	Cal	- E H	and Mc	7 000	-10
WELL		TUBING	UN 3/8	WELL SCREE	N INTERVAL DEPTH:	STATIC DEPT	Н	TOTAL 286	PURGE PUM	IP TYPE	
DIAMETER (in				7, feet to		TO WATER (fe		DEPTH	OR BAILER:)	
		VELL VOLUME :	≃ (TOTAL WEL	L DEPTH - STA	TIC DEPTH TO WATER)	x WELL CAP	ACITY				
(only fill out if	аррисавіе)			= (28	feet-	25.06	feet) X	ع الأمن	allons/foot	0.14 3	d gallons
INITIAL PUMF	OR TUBING	700027	FINAL PUME	OR TUBING	Test.	PURGING	1000	PURGING	alloris/100t	TOTAL VOLU	
DEPTH IN WE		NA	DEPTH IN W		MA	INITIATED AT:	_	ENDED AT:	_	PURGED (ga	ions): 0-14
		CUMUL.	PURGE	DEPTH				DISSOLVED			
	VOLUME PURGED	VOLUME PURGED	RATE	ТО	pН	COND.	TURBIDITY	may or %	TEMP (°C)	ORP	
TIME	(gallons)	(gallons)	(gpm or ml/min)	WATER (feet)	(standard units) (+ 0.1 units)	(μS/cm) (± 3%)	(NTUs) (<u>+</u> 10%)	saturation) (± 10%)	(±1°C)	(mV) (± 19 mV)	COLOR/ ODOF (describe)
745	0.14	0.14	-	25.70	6.91	330.7	1	2.49	25.4	17.0	ditylu
					4.11	,,,,,			1	11.10	
	1				1				1		
							-150	-			27
-						100	1581				V. 1
											-
							11.5% h				
							35		-		
									-	8	
	-		_				166		-		
									-		
	_							12			
			-			-		Ţ	-		
MELL CADAC	ITV (Callege De	, Cook), 0.75% -	0.00: 411 = 0	04. 4.05!! = 0.	00. 011 - 0.40. 022 - 0	0.07: 411 = 0.04	52 - 4 00:	011 4 (7 011 0	04 400 400	100 500	
WELL CAPACI	ITY (Gallons Pe	r F-00t): 0.75" =	0,02; 1" = 0.	04; 1.25" = 0.	06; 2" = 0.16; 3" = 0		5; 5" = 1,02;	6" = 1,47; 8"= 2	.61; 10" =4.08	3; 12" = 5.88	
SAMPLED BY	(PRINT) / AFFIL			SAMPLER(S) S		IG DATA		SAMPLING		SAMPLING	
	(. N.c	ckJ.			1			INITIATED AT:	_	ENDED AT:	-
PUMP OR TUE	BING	10		SAMPLE PUMI)	- 00	1	TUBING	NA		
DEPTH IN WEI	LL (feet):	NA		FLOW RATE (I		NA		MATERIAL CODE:	N P		
EIELD DECON	TAMINATION:	Y (N)		FIELD FILTERE Filtration Equipr		FILIE	R SIZE:	micron	DUBLICATE	100	(2)
-IELD DECON		MPLE CONTAIN	ER	i ilitatori Equipi	турс.			_	DUPLICATE:	Y	
		SPECIFICATION				SAMPLE PRES	ERVATION				
		# of	MATERIAL		PRESERVATIVE	TOTAL	VOL		INTENDED	ANALYSIS	SAMPLING EQUIPMENT
SAMPLE	ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN F	IELD (mL)	FINAL pH	AND/OR		CODE
SCE	(OC					Li					
54%											
											9
							- 28				
REMARKS:	ud en	night the	0 m w	rell to	alled my	67					
AATEDIAL CO.	DEC.	A sale o : Ol	60 - 61		Delive Mandana Company		9 011	T. T. C.	10		
MATERIAL COI		= Amber Glass;				olypropylene;			ther (Specify)		
AMPLING/PUI	ROING APP	= After Peristaltic	rump; B	= Bailer; B	P = Bladder Pump;	ESP = Electric	Submersible Pu	mp; PP = Peris	artic Pump		

WELL NO:	SW·I		DATE:	25 /14	SAMPLE ID: 5	wl		PROJECT NO	P 23	24	
SITE NAME:	Chy	U.S. WUISS	-on			SITE LOCATIO	N: 20	515 E	Duna 1	all blocks	· P
				w —	PURGIN	IG DATA					
WELL	ches): 2	TUBING	hes): 7/8		N INTERVAL DEPTH:	STATIC DEPTI	The second second	DEPTH:	OR BAILE	PUMP TYPE ER: ///	
DIAMETER (inc		DIAMETER (inc		2 feet to	IC DEPTH TO WATER)	TO WATER (fe		DEPTH.	OR BAILE	ik:	
		FELL VOLUME =	(TOTAL WELL	DEPTH-SIAT	IC DEPTH TO WATER)	X VVELL CAPA	10111				
(only fill out if a	арріісавіе)			= (6 feet -	3.75	feet) X	0.16	gallons/foot =	1.0	gallons
NITIAL PUMP	OR TURING		FINAL PUMP			PURGING		PURGING	1	TOTAL VOLU	JME
DEPTH IN WE		8	DEPTH IN W		ъ	INITIATED AT:	1542	ENDED AT:	1554	PURGED (ga	illons): I. Z
		CUMUL.	PURGE	DEPTH				OXYGE			
	VOLUME	VOLUME	RATE	то	ρН	COND.	TURBIDITY	(mga) or	% TEMP	0	001.001.000
TIME	PURGED	PURGED	(gpm or	WATER (feet)	(standard units) (± 0.1 units)	(μS/cm) (<u>+</u> 3%)	(NTUs) (± 10%)	saturation (± 10%)		(mV) (± 19 mV)	COLOR/ ODO: (describe)
	(gallons)	(gallons)	ml/min)				163	0.44	100		some 1 5h
1545	03	6,3	0.1	4.42	6.47	294.2			-		/ PM
1548	0.3	0.6	0-1	4.53	6.37	290.9	149	0.30			**
1551	0.3	0.9	0.1	4.62	6.79	288.8	100.5	6.28	100000		-
1554	0.3	1.50	0.1	4.66	6.28	292.2	19.4	15,20	0 21.	1-6.1	-
											44
				-							
									_		-
		-									
			-								_
											-
WELL CAPACI	ITY (Gallons Pe	r Foot): 0.75" =	0.02; 1" = 0.	04; 1.25" = 0.	06; 2" = 0.16; 3" =	0.37; 4" = 0.6	5; 5" = 1.02;	6" = 1.47;	8"= 2.61; 10" =	4.08; 12" = 5.88	
				T.	SAMPLIN						
SAMPLED BY	(PRINT) / AFFIL	LIATION:		SAMPLER(S)	SIGNATURES:			SAMPLING	1555	SAMPLING	1602
	0	eluls. 4.						INITIATED AT:	1220	ENDED AT:	100-
PUMP OR TUB	BING	90		SAMPLE PUM	50 (3	4 700		TUBING MATERIAL CO	DE: PE		
DEPTH IN WEI	LL (feet):	U		FLOW RATE (I		•	R SIZE:		DE.		
		~		FIELD FILTER		FILIE	K SIZE.	micron			a
FIELD DECON	TAMINATION:	N N	CD.	Filtration Equip	nont Type.				DUPLICAT	re: Y	
		MPLE CONTAIN				SAMPLE PRES	SERVATION				
		SPECIFICATION			PRESERVATIVE	TOTAL			AITEM	DED ANALYSIS	SAMPLING
CAMPIE	ID CODE	# of CONTAINERS	MATERIAL CODE	VOLUME	USED	ADDED IN I		FINAL	7.75	DED ANALYSIS /OR METHOD	EQUIPMENT CODE
	ID CODE	CONTAINERS	CODE	AOFOINIT		7.0000 1111	(1114)		7.51607		1000
3 U	Coc										
			1000								
REMARKS:									-		
ZEMNAKY2:	4 67	com and	W		while (close						
	7 DV	7		1	11. (1	1	.)				
	2 h	rb.d.h v	mb med.	mochi	MMM COLOR	mry mry	v)				
		1 1					8				
MATERIAL CO	DES: A	G = Amber Glass	CG = Clear	Glass: PE =	Polyethylene; PP = P	olypropylene;	S = Silicone:	T = Teflon;	O = Other (Specify	()	
		= After Peristalti		36	BP = Bladder Pump;		Submersible P		Peristaltic Pump		
SAMPLING/PU	API	Alter Peristalli	or ump, s	Dunet,	Dia , minb;			(P)			

WELL NO:	19. W. E		DATE: 6/25/14		SAMPLE ID:	٠٤.		PROJECT N	10:	P2324		
SITE NAME:	C.L.	of Tan	46	- [1-1	110	SITE LOCATIO	N: 25 15	F 1	Jones	- A	Taya	Cı
	C.n) 6/ 100	4°-		PURGIN	IG DATA	0010		7 5000	at less	100	
WELL		TUBING	31.	WELL SCREE	N INTERVAL DEPTH:	STATIC DEPT		TOTAL 3	5	PURGE PUMP		
DIAMETER (in		DIAMETER (inc	hes):	WELL SCREE	35 feet	TO WATER (fe		DEPTH:		OR BAILER:	41	
		ELL VOLUME =	(TOTAL WELL	DEPTH - STA	IC DEPTH TO WATER)	x WELL CAPA	ACIT			//		
(only fill out if	applicable)			=(3	5 feet-	4.43	feet) X	0.16	gall	ons/foot =	4.29	gallons
INITIAL PUMP	OR TUBING		FINAL PUMP		1012/10	PURGING		PURGING		38	TOTAL VOLU	
DEPTH IN WE	LL (feet)	34	DEPTH IN W	ELL (feet):	34	INITIATED AT:	(423	ENDED AT:	1	513	PURGED (gall	ons): 5. 6
		CUMUL.	, PURGE	DEPTH				OXYGI	EN	TEMP		
	VOLUME PURGED	VOLUME PURGED	RATE (gpm or	TO WATER	pH (standard units)	COND. (μS/cm)	TURBIDITY (NTUs)	(ng/L)o saturati	r %	TEMP (°C)	ORP (mV)	COLOR/ ODOR
TIME	(gallons)	(gallons)	ml/min)	(feet)	(± 0.1 units)	(± 3%)	(± 10%)	(<u>+</u> 10%		(± 1 °C)	(<u>+</u> 19 mV)	(describe)
1428	0.5	0.5	0.1	4.18	5.42	1275	6.01	0.7	1	28.3	33.9	um/mm
1433	0.5	1.0	0.1	4.18	5.30	119.1	4.81	0.78		22.2	28.2	м
1438	0.5	1.5	0-1	4.18	5,08	104.8	6.44	0.8	4	24.1	34.4	•
1443	0.5	7.0	0.1	4.18	5.02	99.8	5.44	6.8	9	28.0	34.7	39 0
1448	0.5	2.5	0.1	4.16	4.96	100.3	5.67	0.70		27.9	37. 3	**
1453	0.5	3.0	0.1	4.18	4.97	98.0	4.91	ال 8	9	28.0	37.5	***
1558	v.5	3.5	0.1	4.19	4.97	98.6	4.64	0.8		22.0	40.1	**
1503	0.5		0.1	4.18	4.97	95.7	4.08	0.8		28.1	37.5	~
1508	0.5	4.0	0.1	4.18	4.98	16.4	3.28	0.8		28.0	36.4	**
1513	0.5	5.0	0.1	4.18	4.99	95.8	4.12	0. 8	1	28.0	37.1	
121					AS MINTE							
								Ĭ.				
WELL CAPAC	ITY (Gallons Pe	r Foot): 0.75" = 0	0.02; 1" = 0.0	04; 1.25" = 0.	06; $2^n = 0.16$; $3^n = 0$	0.37; 4" = 0.6	5; 5" = 1.02;	6" = 1.47;	8"= 2.6	31; 10" =4.08	12" = 5.88	
		1171011			SAMPLIN	IG DATA		OAMDI INO			CAMPLING	
SAMPLED BY	(PRINT) / AFFIL	المان		SAMPLER(S)	SIGNATURES:	1		SAMPLING INITIATED A	τ:	1514	SAMPLING ENDED AT:	15 29
PUMP OR TUE	_	172		SAMPLE PUM	P	4 -1		TUBING	***	940934		
DEPTH IN WE		34		FLOW RATE (CION		MATERIAL C	ODE:	G.		
		.\		FIELD FILTER		FILTE	R SIZE: 0. 4	micron		ances on the	CVV	7
FIELD DECON		(A) N		Filtration Equip	ment Type:					DUPLICATE:	Y	(N)
		MPLE CONTAINI SPECIFICATION				SAMPLE PRES	SERVATION					
		# of	MATERIAL		PRESERVATIVE	TOTAL				INTENDED	ANAL YSIS	SAMPLING EQUIPMENT
SAMPLE	ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN	FIELD (mL)	FINAL	pH	AND/OR	210.000	CODE
741	(OL									i.		
			5									
							- 1					
REMARKS:												
MATERIAL CO		G = Amber Glass;					S = Silicone;			ner (Specify)		
SAMPLING/PU	IRGING APP	= After Peristaltic	Pump; B	= Bailer;	3P = Bladder Pump;	ESP = Electric	Submersible Pu	ımp; PP	= Perista	altic Pump		

WELL NO:	E 1.1-7		DATE:	15/14	SAMPLE ID: EW	1.2		PROJECT NO:	PLZV	1	
SITE NAME:	EW-2 (.hy	·1 to	mer			SITE LOCATIO	N: 2517	SE H	ama Ac	OTHER TO	FL
				2	PURGIN						
VELI.		TUBING	3/6			STATIC DEPTI		TOTAL 7.72			
NAMETER (inc	ches): 2	DIAMETER (inch	les): D	feet to		TO WATER (fe		DEPTH: 94	OR BAILER:	m	
		ELL VOLUME =	TOTAL WELL	DEPTH-STAT	C DEPTH TO WATER)	x WELL GAPA	CHY				
(only fill out if a	ipplicable)			= (70 feet-	3.10	feet) X	0.16	gallons/foot =	1.05	gallons
NITIĀL PUMP	OR TUBING		FINAL PUMP		Ta T	PURGING	The second	PURGING		TOTAL VOLU	ME
DEPTH IN WE		9.0	DEPTH IN WI		9.0	INITIATED AT:	1357	ENDED AT:	1406	PURGED (gal	ons): 1. 25
		CUMUL.	PURGE	DEPTH	=""			OXYGEN			
	VOLUME	VOLUME	RATE	TO	pН	COND.	TURBIDITY	OXYGEN (ng/) or %	TEMP	ORP	
	PURGED	PURGED	(gpm or	WATER	(standard units)	(μS/cm)	(NTUs) (<u>+</u> 10%)	saluration) (<u>+</u> 10%)	(°C) (± 1 °C)	(mV) (<u>+</u> 19 mV)	(describe)
TIME	(gallons)	(gallons)	ml/min)	(feet)	(<u>+</u> 0.1 units)	(<u>+</u> 3%)	19.8	2.70		86.3	10
1354	6.25	0.25	6.1	3.26	4.18	77.3			31.3		non Juan
1357	0.25	u. 50	1.1	3.26	4.06	11.7	22.3	2.67	31.6	64.1	- "
1400	0.15	4.15	0-1	3.26	4.06	77.9	14.2	2.68	31.8	60.9	
1403	0.25	1.0	0.1	3.26	4.05	76.8	7.88	2.76	31.8	67.6	
1406	0.25	1.25	0.1	3.26	4.03	75. 3	6.15	2.78	31.8	62.2	**
1,00		11.0									
		-									
						-	_				
						_			-		
						-					
									_		-
									_		-
÷:											
WELL CAPAC	ITY (Gallons Pe	er Foot): 0.75" = 1	0.02: 1" = 0.	04: 1.25" = 0	.06; 2" = 0.16; 3" =	0.37; 4" = 0.6	5; 5" = 1.02;	6" = 1.47; 8"=	= 2.61; 10" =4.0	12" = 5.88	
TILLE ON NO	III (Gallotto I e	711000			SAMPLII	NG DATA		44:			
SAMPLED BY	(PRINT) / AFFI	LIATION		SAMPLER(S)	SIGNATURES:	14		SAMPLING		SAMPLING	1409
	C	, pr. chaly	Ď			1		INITIATED AT:	1407	ENDED AT:	[30]
PUMP OR TUE				SAMPLE PUM	IP.			TUBING	m		
DEPTH IN WE	LL (feet)	8.0			mL per minute):	4100		MATERIAL COD	E: PE		
		A		FIELD FILTER	ED: Y	FILTE	ER SIZE:	micron	100 0 1-800		1
FIELD DECON	ITAMINATION:	(Y) N		Filtration Equip	ment Type:				DUPLICATE:	Y	_ (N
	SA	MPLE CONTAIN	ER								
Y		SPECIFICATION			DDE CEDVATIVE	SAMPLE PRE			-		SAMPLING
		# of	MATERIAL	V(C) 17:	PRESERVATIVE USED		L VOL	FINAL p	15. 5.5	D ANALYSIS R METHOD	EQUIPMENT
SAMPLE	ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN	FIELD (mL)	riiwa. p	ANDIO	THETHOU	
su	(oc										
_											Y
REMARKS:									_		in the second
VEININKY?											
	- A	G = Amber Glass;	CG = Clear	Glass: PF =	Polyethylene; PP =	Polypropylene;	S = Silicone:	T = Teflon; O	= Other (Specify)		
	734	P = After Peristalti		3 = Bailer;	BP = Bladder Pump;		c Submersible F		eristaltic Pump		
	NO API	- With Leusigilli	orump, I	- Danoi,							

WELL NO:	MW-5		DATE:	25 14	SAMPLE ID:	5		PROJECT NO:	Przzy	MI	
SITE NAME:	Ch	of Tu	ngen.	0-101		SITE LOCATIO	ON: 2513	S E Ho	ma A	-	FL
	()				PURGIN	IG DATA				36.70	Table State
WELL		TUBING	∢ [.		NINTERVAL DEPTH:	STATIC DEPT		TOTAL	PURGE PUM	IP TYPE	
DIAMETER (inc	hes): Z	TUBING DIAMETER (inc	hes):	L'S feet to		TO WATER (fe		DEPTH: 34-	OR BAILER:		
		ELL VOLUME =	(TOTAL WELL	DEPTH - STAT	IC DEPTH TO WATER)	x WELL CAP	ACITY				
(only fill out if a	pplicable)			= (3	5 feet - 2	9.20	feet) X	0-16 gal	lons/foot =	0 10	.93 gallons
BUTMI DUMD	OD TUDINO		FINAL PUMP	<u>_</u>		PURGING	1000	PURGING		TOTAL VOLUM	ME
INITIAL PUMP		31.5	DEPTH IN W		34.5	INITIATED AT:	12.20	ENDED AT:	1237	PURGED (gall	1 -1
DEI IIIIII III	L (root)	CUMUL.	PURGE	DEPTH				OXYGEN			
	VOLUME	VOLUME	RATE	TO	рН	COND.	TURBIDITY	mg) or %	TEMP (°C)	ORP	001.001.000
TIME	PURGED (gallons)	PURGED (gallons)	(gpm or ml/min)	WATER (feet)	(standard units) (<u>+</u> 0.1 units)	(μS/cm) (± 3%)	(NTUs) (± 10%)	saturation) (+ 10%)	(± 1 °C)	(mV) (± 19 mV)	COLOR/ ODO (describe)
1225	0.5	6.5	0.1		7.07	470.5	273	0.83	27.7	0.6	an he
2000		0.3	-	30.95	6.80	478.0	524	0.43	24.1	-3.0	w
11	0.3		0. (31.31		420.9	361	0.40	28.2	-4.5	
اروجح	0.3	1.1	0.1		6.76	424.2		0.52	27.8	-6.1	
1290123	7 0. 5	1.4	0.1	31,64	4.77		107.2		27.7		4
1237	0.3	1.7	0.1	32.09	6.79	485.1	64.9	0.48	61.1	-10.9	
										_	
	s								-		
										-	
	1										
						Ù					
	(
WELL CAPACI	TY (Gallons Pe	r Foot): 0.75" =	0.02; 1" = 0.	04; 1.25" = 0.	06; 2" = 0.16; 3" =		5; 5" = 1.02;	6" = 1.47; 8"= 2	.61; 10" =4.0	08; 12" = 5.88	
					SAMPLII	NG DATA		CAMPLING		SAMPLING	
SAMPLED BY	PRINT) / AFFIL	LIATION:	ا.دلماء	SAMPLER(S)	SIGNATURE			SAMPLING INITIATED AT:	238	ENDED AT:	1356
ni 11 to 00 71 to	/	7 (1)	0,000	SAMPLE PUM		248	_	TUBING	0-0	ENOCE / III	1000
PUMP OR TUB DEPTH IN WEL		1 34.5		FLOW RATE (400)	MATERIAL CODE:	PE		
DEF TITIIN VVE	L (leet)			FIELD FILTER		FILTE	R SIZE:	micron			\sim
FIELD DECON	TAMINATION:	(Ŷ) N		Filtration Equip	ment Type:				DUPLICATE:	Y	(N)
	SA	MPLE CONTAIN		W							
		SPECIFICATION			PRESERVATIVE	SAMPLE PRE	L VOL		3 3000 30	D ANALYSIS	SAMPLING
SAMPLE	ID CODE	# of CONTAINERS	MATERIAL CODE	VOLUME	USED		FIELD (mL)	FINAL pH	170	D ANALYSIS R METHOD	EQUIPMENT CODE
	(00	CONTAINERS	JODE	VOCOIVIL			()				
30	. (00										
		-									·
REMARKS:						7					
	6.11.9	Sample .	e 123-	- twh	· 4 1145	WL	4.				
MATERIAL CO	DES: AC	G = Amber Glass	CG = Clear	Glass; PE =	Polyethylene; PP = 8	Polypropylene;	S = Silicone;	T = Teflon; O = C	ther (Specify)		
SAMPLING/PU	RGING APP	= After Peristalti	c Pump; E	3 = Bailer;	BP = Bladder Pump;	ESP = Electric	c Submersible P	ump; PP = Peris	taltic Pump		

WELL NO:	MM.6		DATE:	25/14	SAMPLE ID:	N-6		PROJECT NO:	P23 21	1	
SITE NAME:	()	٠, ٢	Impe			SITE LOCATIO	N: 25	2505		- Ac	Tourfl
	City	UF .	1		PURGIN	IG DATA	-	0010	C Pysics		
NELL	1947	TUBING			NINTERVAL DEPTH:	STATIC DEPTH	-21 11	TOTAL 35	PURGE PUMP	TYPE PW	b
DIAMETER (in		DIAMETER (inch				TO WATER (fe		DEPTH:	OR BAILER:	40.0 11	_
		ELL VOLUME = (TOTAL WELL	DEPTH-STAT	IC DEPTH TO WATER)	X WELL CAPA	OTT				
only fill out if a	аррисавіе)			= (3.	feet -	24.33	feet) X	U.16 gal	lons/foot =	1.76	gallons
NITIAL PUMP	OR TUBING		FINAL PUMP		11.700.00	DURGING	2.7	PURGING		TOTAL VOLUM	
DEPTH IN WE		34	DEPTH IN WE	LL (feet):	34	INITIATED AT:	1112	DISSULVED	133	PURGED (gallo	ons): 1.8
		CUMUL.	PURGE	DEPTH	10	COND.	TURBIDITY	mg/Lor %	TEMP	ORP	
	VOLUME PURGED	VOLUME PURGED	RATE (gpm or	TO WATER	pH (standard units)	(μS/cm)	(NTUs)	saturation)	(°C)	(mV)	COLOR/ODOR
TIME	(gallons)	(gallons)	ml/min)	(feet)	(<u>+</u> 0,1 units)	(± 3%)	(<u>+</u> 10%)	(± 10%)	(±1°C)	(± 19 mV)	(describe)
1120	0.5	0.5	1.0	24.40	6.58	563	49.9	0.22	27.7	-21.6	week Just
1125	0.5	1.0	0.1	24.37	6.55	562	n.7	0.13			-
1130	0.5	1.5	0.1	24.38	6.55	565	10.56		28.0	-19.0	1.
1133	0.3	1.8	8.1		4.55	566	2.98	0.10	2011	- (0.3	
						_					
						-					
								-			
									-		
									-		
									-		
	0							1	-	-	
								011 - 4 47. 911-1	10" -4.0"	R: 12" = 5.88	
WELL CAPAC	CITY (Gallons Pe	er Foot): 0.75" =	0.02; 1" = 0.	04; 1.25" = 0	.06; 2" = 0.16; 3" =	0.37; 4" = 0.6 NG DATA	5; 5" = 1.02;	6" = 1.47; 8 = 2	2.01, 10 -4.0	0, 12 - 5.50	
SAMDLED BY	(PRINT) / AFFI	HATION:		SAMPLER(S)	SIGNATURES:	NG DATA		SAMPLING	123	SAMPLING	-0
OAMI LLD DI	C.N.	chols			/	INITIATED AT: 1134 ENDED AT: 1				115C	
PUMP OR TU				SAMPLE PUM	1P	10.01		TUBING	PE		
DEPTH IN W	ELL (feet)	34		FLOW RATE	(mL per minute)	Cov	ER SIZE:	MATERIAL CODE: micron	1 0		
		c1		FIELD FILTER		FILIT	ER SIZE.	moron	DUPLICATE:	Υ.	(N)
FIELD DECO	NTAMINATION:	Y N AMPLE CONTAIN	FR	, madion Equip	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	S.F	SPECIFICATION				SAMPLE PRE	SERVATION	-	1		SAMPLING
		# of	MATERIAL		PRESERVATIVE		L VOL	enter a	600	D ANALYSIS	EQUIPMENT
SAMPL	E ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN	FIELD (mL)	FINAL pH	AND/OF	RMETHOD	CODE
Su	(00										
					4			-	_		
000											
REMARKS:											
						Dehmand	C = Cilicana	T = Toflon: O =	Other (Specify)		
MATERIAL C		G = Amber Glass				Polypropylene;	S = Silicone; ic Submersible I		istaltic Pump		
SAMPLING/F	PURGING AP	P = After Peristalli	c Pump,	3 = Bailer;	BP = Bladder Pump;	LOP - Electri	w. system residents i	The Paris of	р		

WELL NO:	5		DATE:	25 14	SAMPLE ID:	w-1		PROJECT NO:	PZ3z	1	
SITE NAME:	DM.			leslet	12.	SITE LOCATIO	N: 25	15 & Han	men A	1.5-4-74-11-	MA
	City	of Tay	r .		DURCIN	IG DATA	US	I E HAM	PF	1 (4)	1
WELL		TUBING	21	WELL SCREE	N INTERVAL DEPTH:	STATIC DEPTI	4	TOTAL	PURGE PUMI		
DIAMETER (in		DIAMETER (incl		45 feet to	So feet	TO WATER (fe		DEPTH: 31	OR BAILER:	5.00	~
WELL VOLUM	IE PURGE: 1 W	ELL VOLUME =	(TOTAL WELL	DEPTH - STAT	C DEPTH TO WATER)	x WELL CAPA	CITY				
(only fill out if a	applicable)			= (o feet-	24.62	feet) X	U. 16 gal	lons/foot =	4.06	gallons
INITIAL PUMP	OR TURING		FINAL PUMP		inot.	PURGING	8	PURGING	6-3	TOTAL VOLU	ME
DEPTH IN WE		47	DEPTH IN WE		47	INITIATED AT:	957		1040	PURGED (gal	lons): 4.3
		CUMUL.	PURGE	DEPTH	00.0	paca.		OXYGEN (Mg/L) %	TEMO		
	VOLUME PURGED	VOLUME PURGED	RATE (gpm or	TO WATER	pH (standard units)	COND. (μS/cm)	TURBIDITY (NTUs)	(ng/L of % saturation)	TEMP (°C)	ORP (mV)	COLOR/ ODOR
TIME	(gallons)	(gallons)	ml/min)	(feet)	(± 0.1 units)	(± 3%)	(+ 10%)	<u>(+</u> 10%)	(<u>+</u> 1 °C)	(<u>+</u> 19 mV)	(describe)
1002	0.5	0.5	-								
1007	0.5	1.0	0.1	27.74	6.98	368.2	18.3	0.30	27.1	5.3	non Jun
1012	0.5	1.5	0.1	27.97	6.90	367-4	14.9	0.22	27.1	6.9	
1017	0.5	2.0	0-1	-	6.25	367.2	6.73	0.16	24.4	3.6	
1022	0.5	2.5	0.1	28.40	6.25	365.1	\$20	0.16	26.8	2.6	M
1027	0.5	3.D	0.1	28.46	مان م	365.5	7.41	0.19	26.9	0.4	**
1032	0.5	3.5	0.1	28.45	6.36	362.2	10.81	0.21	26.7	*1.0	*
1037	0.5	4.0	0.1	28.45	6.89	351.8	5.97	0.23	26.8	-0.9	1.
1040	0.3	4.3	1.0	22.45	6.90	356.2	8.49	0.15	26.9	-1.9	
						- 4					-
	-									-	
-				-							
WELL CAPAC	ITY (Gallons Pe	r Foot): 0,75" =	0.02; 1" = 0.	04; 1.25" = 0	06; 2" = 0.16; 3" =	0.37; 4" = 0.6	5; 5" = 1.02;	6" = 1.47; 8" = 2.	61; 10" =4.0	8; 12" = 5.88	
					SAMPLII	NG DATA					
SAMPLED BY	(PRINT) / AFFI			SAMPLER(S)	SIGNATURES:			SAMPLING INITIATED AT:	040	SAMPLING ENDED AT:	1045
DUNIO OD TU	C'NY,	W >		SAMPLE PUM				TUBING	O (C	ENDED AII.	
PUMP OR TUE DEPTH IN WE		47			mL per minute):	LIW		MATERIAL CODE:	PG		
		~		FIELD FILTER		FILTE	R SIZE:	micron		22.00	4
FIELD DECON	ITAMINATION:	(V) N		Filtration Equip	ment Type:				DUPLICATE:	Y	_ (N)
		MPLE CONTAIN				SAMPLE PRE	SERVATION				
		SPECIFICATION # of	MATERIAL		PRESERVATIVE	TOTA			INTENDE	O ANALYSIS	SAMPLING EQUIPMENT
SAMPLE	ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN	FIELD (mL)	FINAL pH	The second second	METHOD	CODE
su	COL										
117											
									-		_
DEMARKS											
REMARKS:											
MATERIA: CT	nre.	C as Ambas Olas	CC = Class	Class: DE -	Polyethylene; PP = f	Polypropylene;	S = Silicone	T = Teflon: O = O	ther (Specify)		
MATERIAL CO	III.	G = Amber Glass; P = After Peristalti			BP = Bladder Pump;		Submersible F				
Same Purday.	ACT	,or i onotalti	pa					* 51			

WELL NO:	Mw.	10	DATE:	25: 14	SAMPLE ID:	N-7		PROJECT NO:	PLZZ	1	
SITE NAME:		h of		C 3 1 1	-	SITE LOCATIO	N: 251	5 E H.		re Tan	- FI
		y w	1 auga		DURGIN	IG DATA	231	J C 75	AND IS	1 44	ya IC
WELL		TUBING	-1	WELL SCREE			Н	TOTAL	PURGE PUM	P TYPE.	
DIAMETER (in	nches): 2"	DIAMETER (inc	hes): 9 8	25 feet to	35 feet	TO WATER (fe	et): 23.73	DEPTH: 35	OR BAILER:	sub.	
WELL VOLUM	ME PURGE: 1 V	VELL VOLUME =			C DEPTH TO WATER)	x WELL CAPA	ACITY		Å.		
(only fill out if	applicable)			= (3	5 feet-	23.73	feet) X	0.16 gal	lons/foot =	1. 20	gallons
MUTIAL DUBAD	אוומו וד מס נ		FINAL PUMP		1975	PURGING		PURGING	05-0501	TOTAL VOLU	
INITIAL PUMP DEPTH IN WE		34	DEPTH IN W		34	INITIATED AT:	85ZA	ENDED AT:	911	PURGED (gal	2 1
DEI IIIII VVC	LL (ICCI).					WATER TO THE		DISSULVED		,,,	T T
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pН	COND.	TURBIDITY	OXXGEN mg/l or %	TEMP	ORP	
	PURGED	PURGED	RATE	WATER	(standard units)	(μS/cm)	(NTUs)	saluration)	(°C) (<u>+</u> 1 °C)	(mV)	COLOR/ ODOF
TIME	(gallons)	(gallons)	ml/min)	(feet)	(<u>+</u> 0.1 units)	(± 3%)	(± 10%)	(<u>+</u> 10%)		(± 19 mV)	(describe)
855	0.5	0.5	0-1	24.69	6.77	308.1	31.5	0.52	26.3	-6.1	200-101
900	6.5	1.0	0.1	-	-	•	-	-	-	-	
905	0.5	1.5	0.1	24.98	6.97	306.0	13.0	0.48	26.3	-0.6	
908	3	1.8	0.1	24.95	6.96	307.0	9.02	0.56	24.4	8.1	•
111	0.3	2.1	1.0	24.70	6.97	307.8	7.21	0.60	26.60	16.0	350
	<u> </u>										
						-					
	1										
	1	 									
WELL CARAC	NTV (O-II D-	0.7511	0.00: 411 = 0.1	24: 4.25" = 0	06; 2" = 0.16; 3" =	0.37: 4" = 0.6	5: 5" = 1.02:	6" = 1 A7: 8"= 2	61: 10" =4 0	B: 12" = 5.88	1
WELL CAPAC	TIY (Gallons Pe	er Foot): 0.75 = 1	0.02; 1" = 0,1	J4, 1.25 - U.	SAMPLIN		J, J - 1.02,	0 - 1.47, 0 - 2.	01, 10 -4.0	0, 12 - 0.00	
SAMPLED BY	(PRINT) / AFFI	LIATION:		SAMPLER(S) S		NG DATA		SAMPLING	ž.	SAMPLING	e
0,4411 220 0 .	C-	واساء لم		J 22. (0)		1		INITIATED AT:	912	ENDED AT:	平 922
PUMP OR TUI				SAMPLE PUM	P			TUBING	-		
DEPTH IN WE		34		FLOW RATE (nL per minute):	4100		MATERIAL CODE:	PE		
				FIELD FILTER	ED; W N	FILTE	R SIZE: 0. 1	micron			_
FIELD DECON	NTAMINATION:	(Ŷ) N		Filtration Equip	ment Type:			-	DUPLICATE:	Y	
	SA	AMPLE CONTAIN	ER	V.—							
		SPECIFICATION			PRESERVATIVE	SAMPLE PRES	tu'e	r	-		SAMPLING
		# of	MATERIAL	VOLUME	USED	TOTA		EINIAI		O ANALYSIS METHOD	EQUIPMENT CODE
	ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN	FIELD (IIIL)	FINAL pH	ANDIOR	WETHOU	CODE
Sir	100										
REMARKS:								•	112		
	_					N=1	0 - 011	T - T-8	these (Out - 15.)		
MATERIAL CC	7.7.63	G = Amber Glass;		0		olypropylene;			ther (Specify)		
SAMPLING/PU	JRGING APP	P = After Peristaltic	Pump; E	= Bailer;	3P = Bladder Pump;	ESP = Electric	Submersible P	ump; PP = Perist	tartic Pump		

WELL NO:	EW-1		DATE:	25 14	SAMPLE ID:	W-1		PROJECT NO:	P 2324		
SITE NAME:	C.F	1 1	mon			SITE LOCATION	DN: 2515	E Hn	ova Ae	Tomper	- PC
						G DATA		Imamu.	Tournos ou nu		
WELL	nches): 2	TUBING DIAMETER (inc	thes): 3/2	WELL SCREE	N INTERVAL DEPTH:	STATIC DEPT TO WATER (fe	_	TOTAL DEPTH: 31	PURGE PUM OR BAILER:	/r	
OIAMETER (in					IC DEPTH TO WATER)			DEI III.OI	OTT DE MILES M		
(only fill out if		TELE TOLOMIA	(101)1211241								
				= (12	90 feet-	2.71	feet)	0-16	gallons/foot =	1.63	gallons
NITIAL PUMP	OR TUBING	V	FINAL PUMP	OR TUBING		PURGING	1324	PURGING	1344	TOTAL VOLUM	1 35
DEPTH IN WE	LL (feet):	12	DEPTH IN W	ELL (feet):	12	INITIATED AT:	1201	ENDED AT:	1517	PURGED (gall	ons): 1.75
		CUMUL.	PURGE	DEPTH		COND.	TURBIDITY	OXYGEN or %	TEMP	ORP	
	VOLUME PURGED	VOLUME PURGED	RATE (gpm or	WATER	pH (standard units)	(μS/cm)	(NTUs)	saturation)	(°C)	(mV)	COLOR/ ODOF
TIME	(gallons)	(gallons)	ml/min)	(feet)	(<u>+</u> 0.1 units)	(<u>+</u> 3%)	(<u>+</u> 10%)	<u>(+</u> 10%)	(<u>+</u> 1 °C)	(<u>+</u> 19 mV)	(describe)
1327	0.25	0.25	0-1	2.89	5. 87	157.8	62.2	1.10	289	44.5	nan/ner
1330	0.25	0.50	0.1	7.90	5.68	153.7	48.8	1.66	28.5	43.6	h
1333	0. 25	0.75	0-1	2.90	5.55	154.9	30.9	1.57	28.9	31.3	4
1336	0.25	4.0	U. 1	2.90	5.40	156.6	20.2	1.56	22.9	424	
1359	0.25	1.25	0.1	2.90	5.61	157.2	12.3	1.56	28.9	42.6	
1342	v 25	1.50	0-1	2.90	5.60	157.8	14.7	1.55	23.9	41.3	-
1344	0. 15	1.75	0.1	2.90	5.59	158.1	10.6	1.56	28.9	42.2	Ma.
VELL CAPAC	ITY (Gallons Pe	er Foot): 0.75" =	0.02; 1" = 0.	04; 1.25" = 0.			5; 5" = 1.02;	6" = 1.47; 8"=	2.61; 10" =4.08	8; 12" = 5.88	
DAMPIED BY	(PRINT) / AFFI	LIATION:		SAMPLER(S)	SAMPLINES:	NG DATA		SAMPLING		SAMPLING	
SAMPLED BY		دلساء		SAMPLEK(S)	SIGNATORES.	1		INITIATED AT:	1347	ENDED AT:	1349
PUMP OR TU				SAMPLE PUM	P (9		TUBING	5-45		
DEPTH IN WE		12		FLOW RATE (mL per minute):	LION		MATERIAL CODE	PC		
				FIELD FILTER		FILTE	ER SIZE:	micron	1000		7
FIELD DECON	TAMINATION:			Filtration Equip	ment Type:				DUPLICATE:	ΥΥ	
		MPLE CONTAIN SPECIFICATION				SAMPLE PRE	SERVATION				1172
		# of	MATERIAL		PRESERVATIVE		L VOL		INTENDE	O ANALYSIS	SAMPLING EQUIPMENT
SAMPLE	ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN	FIELD (mL)	FINAL pl	-:	METHOD	CODE
Su	COL										
REMARKS:											
MATERIAL CO	DDES: A	G = Amber Glass;	CG = Clear	Glass; PE =	Polyethylene; PP = F	olypropylene;	S = Silicone;	T = Teflon; O =	Other (Specify)		
SAMPLING/PU		= After Peristalti	c Pump; E	B = Bailer;	BP = Bladder Pump;	ESP = Electric	c Submersible F	Pump; PP = Pe	ristaltic Pump		

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

ATTACHMENT D

Laboratory Analytical Reports

Thank you **Ms. Bridget Morello** for the opportunity to be of service to you and your company; we **Sincerely Appreciate Your Business**. SRL certifies these **Laboratory Results** were produced in accordance with NELAC Standards. Hold times and preservation requirements were met for all analytes unless specifically noted in the report. Results relate only to the samples as received.

Client Name: Progressive Eng. & Construction, Inc.	Date(s) Collected: 06/25-06/26/14
Contact Name: Bridget Morello	Date Received: 06/27/14
Project Name: City of Tampa	Time Received: 14:10
Project Number: P9000	Date Reported: 07/08/14
Phone Number: (813) 930-0669	Date Emailed: 07/08/14
Fax Number: (813) 930-9809	SRL Work Order # 14-06032

R1 071714

SRL WO#	Clients #	Matrix	Analysis Requested
1406032-001	DW-2	Liquid	EPA 8260(VOC)/8260-SIM(1,4-Dioxane)
1406032-002	SW-1	Liquid	* EPA 8260(VOC)/Ethylene glycol/
			Aluminum/Antimony/Arsenic /Barium/
			Boron/Cadmium/Chromium/Lead/
			Copper/Selenium/Sodium/Tin/
			Mercury
1406032-003	MW-8	Liquid	* EPA 8260(VOC)/8260-SIM(1,4-Dioxane)
			Ethylene glycol/Aluminum/Antimony/
			Arsenic /Barium/Boron/Cadmium/
			Chromium/Lead/Copper/Selenium/
			Sodium/Tin/Mercury/Flouride/SVOCs
1406032-004	EW-2	Liquid	EPA 8260(VOC)
1406032-005	EW-1	Liquid	EPA 8260(VOC)
1406032-006	MW-5	Liquid	* EPA 8260(VOC)/8260-SIM(1,4-Dioxane)
			Ethylene glycol/Aluminum/Antimony/
			Arsenic /Barium/Boron/Cadmium/
			Chromium/Lead/Copper/Selenium/
			Sodium/Tin/Mercury/Flouride/SVOCs
1406032-007	Trip Blank	Liquid	EPA 8260(VOC)/8260-SIM(1,4-Dioxane)

Nonconformance: This report is an amendment to the original report dated June 08, 2014 for this work order. Additional Information: The samples listed above (*) were originally on hold per client request. After the fin report was issued, the client requested dissolved Aluminum analysis of these samples. The results are included in this revised report.

Affected Samples: SW-1 [1406032-002], MW-8 [1406032-003], MW-5 [1406032-006]

Southern Research Laboratories, Inc.

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified

FDOH Cert # : E83484 SRL Lab Ref # : 14-06032 Received Date : 06/27/14

Project Number/Project Name

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

P9000

City Of Tampa Tampa, FL

PQL

MDL

CAS Number

EPA Method 8260B 1,4-Dioxane in Water by GC-MS Method 8260 Purge and Trap using Gas Chromatography/Mass Spectrometry and Selective Ion Monitoring (SIM)

Client ID #	: DW-2	MW-8	MW-5	Trip Blank			
SRL (Lab) ID#	: 1406032-001	1406032-003	1406032-006	1406032-007	7		
Date Collected	: 06/26/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/03/14	07/03/14	07/03/14	07/03/14			
Date Analyzed	: 07/03/14	07/03/14	07/03/14	07/03/14	MDL	PQL	CAS Number
1,4-Dioxane	1.6	0.5 U	7.0	0.5 U	0.5	1.0	123-91-1
Units	: ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 1	1	1	1	1	1	
Surrogate (% Rec)	:			(Surrogat	e Contro	l Limits)
Dioxane-d8	109.3%	112.9%	117.3%	103.1%		70-130	

Client ID # : Method Blank SRL (Lab) ID# : MB070314

Date Collected : NA
Lab FDOH Certification # : E83484
Date Prepared : 07/03/14
Date Analyzed : 07/03/14

1,4-Dioxane 0.5 U 0.5 1.0 123-91-1 Units : ug/L ug/L ug/L **Dilution Factor (MEDF)** : 1 Surrogate (% Rec) (Surrogate Control Limits) Dioxane-d8 100.0% 70-130

 $\begin{array}{c|ccccc} & \mbox{\it \% Recovery} & \mbox{\it Acceptable} & \mbox{\it \% RPD} & \mbox{\it Acceptable} \\ & \mbox{\it LCS/MS/MSD} & \mbox{\it Limits} & \mbox{\it MS/MSD} & \mbox{\it Limits} \\ 1,4\text{-Dioxane} & \mbox{\it 97/93/106} & \mbox{\it 70-130} & \mbox{\it 11} & \mbox{\it 0-30} \\ \end{array}$

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

Project Number/Project Name

P9000

City Of Tampa

NELAP Certified

FDOH Cert # : E83484

SRL Lab Ref #: 14-06032

Received Date: 06/27/14

Tampa, FL

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

EPA Method 5030/8260B Volatile Organics in Water by GC-MS

Client ID # SRL (Lab) ID#	: DW-2 : 1406032-001	SW-1 1406032-002	MW-8 1406032-003	EW-2 1406032-004			
Date Collected	: 06/26/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/01/14	07/01/14	07/01/14	07/01/14			
Units	: ug/L	ug/L	ug/L	ug/L	MDL	PQL	CAS Number
Dichlorodifluoromethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	75-71-8
Chloromethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	74-87-3
Vinyl Chloride	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-01-4
Bromomethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	74-83-9
Chloroethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	75-00-3
Trichlorofluoromethane	2.0 U	2.0 U	2.0 U	2.0 U	1.0	2.0	75-69-4
1,1-Dichloroethene	0.6 I	1.0 U	1.0 U	1.0 U	0.2	1.0	75-35-4
Methylene Chloride	5.0 U	5.0 U	5.0 U	5.0 U	2.0	5.0	75-09-02
Trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	156-60-5
Acetone	50 U	50 U	50 U	50 U	25	50	67-64-1
Methyl tert-Butyl Ether	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	1634-04-4
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-34-3
Cis-1,2-Dichloroethene	25	1.0 U	1.0 U	1.0 U	0.2	1.0	156-59-2
2,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	590-20-7
Bromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	74-97-5
Chloroform	1.0	1.0 U	1.0 U	1.0 U	0.2	1.0	67-66-3
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	0.8	1.0	56-23-5
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	71-55-6
1,1-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	563-58-6
2-Butanone (MEK)	10 U	10 U	10 U	10 U	5.0	10	78-93-3
Benzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	71-43-2
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	107-06-2
Trichloroethene	70	0.2 I	2.7	1.0 U	0.2	1.0	79-01-6
Dibromomethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	74-95-3
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	78-87-5
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	75-27-4
Cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-01-5
Toluene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	108-88-3
Tetrachloroethene	310 D10	0.7 I	2.8	1.0 U	0.2	1.0	127-18-4
4-Methyl-2-Pentanone (MIBK)	10 U	10 U	10 U	10 U	5.0	10	108-10-1
Trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-02-6
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	79-00-5
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	124-48-1
1,3-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	142-28-9
1,2-Dibromoethane (EDB)	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	106-93-4
2-Hexanone (MBK)	10 U	10 U	10 U	10 U	5.0	10	591-78-6
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	108-90-7
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	100-41-4
1,1,1,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	630-20-6
m- & p-Xylene	2.0 U	2.0 U	2.0 U	2.0 U	1.0	2.0	108-38-3/106-42-3
o-Xylene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	95-47-6
-							

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Bridget Morello

Orlando, Florida 32804 (407) 522-7100

Project Number/Project Name

SRL Lab Ref #: 14-06032

Received Date: 06/27/14

P9000

City Of Tampa

NELAP Certified FDOH Cert # : E83484

Tampa, FL

Progressive Engineering & Construction, Inc. 3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

EPA Method 5030/8260B Volatile Organics in Water by GC-MS (cont)

Client ID # SRL (Lab) ID# Date Collected Lab FDOH Certification # Date Prepared	: DW-2 : 1406032-001 : 06/26/14 : E83484 : 07/01/14	SW-1 1406032-002 06/25/14 E83484 07/01/14	MW-8 1406032-003 06/25/14 E83484 07/01/14	EW-2 1406032-004 06/25/14 E83484 07/01/14	ı		
Date Analyzed	: 07/01/14	07/01/14	07/01/14	07/01/14	MDL	PQL	CAS Number
Styrene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	100-42-5
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-25-2
Isopropylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	98-82-8
Bromobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	108-86-1
n-Propylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.4	1.0	103-65-1
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	79-34-5
2-Chlorotoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	95-49-8
1,2,3-Trichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	96-18-4
1,3,5-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	108-67-8
4-Chlorotoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	106-43-4
tert-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	98-06-6
1,2,4-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	95-63-6
sec-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	135-98-8
p-Isopropyltoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	99-87-6
1,3-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	541-73-1
1,4-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	106-46-7
n-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	104-51-8
1,2-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	95-50-1
1,2-Dibromo-3-Chloropropane	3.0 U	3.0 U	3.0 U	3.0 U	1.0	3.0	96-12-8
1,2,4-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	120-82-1
Hexachlorobutadiene	3.0 U	3.0 U	3.0 U	3.0 U	2.0	3.0	87-68-3
Naphthalene	5.0 U	5.0 U	5.0 U	5.0 U	2.0	5.0	91-20-3
1,2,3-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	87-61-6
Units	: ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 1	1	1	1	1	1	
Surrogate (% Rec)	:			(5	Surrogat	e Control	Limits)
Dibromofluoromethane	99.2%	99.3%	101.1%	98.1%		70-130	
1-2-Dichloroethane-d4	110.2%	105.2%	104.6%	105.3%		70-130	
Toluene-D8	89.0%	90.0%	90.3%	92.8%		70-130	
4-Bromofluorobenzene	92.3%	101.4%	96.1%	96.2%		70-130	

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified FDOH Cert #: E83484 SRL Lab Ref #: 14-06032 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS

Client ID #	: EW-1	MW-5	Trip Blank			
SRL (Lab) ID#	: 1406032-005	1406032-006	1406032-007			
Date Collected	: 06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/01/14	07/01/14	07/01/14			
Units	: ug/L	ug/L	ug/L	MDL	PQL	CAS Number
Dichlorodifluoromethane	2.0 U	2.0 U	2.0 U	0.5	2.0	75-71-8
Chloromethane	2.0 U	2.0 U	2.0 U	0.5	2.0	74-87-3
Vinyl Chloride	1.0 U	1.0 U	1.0 U	0.2	1.0	75-01-4
Bromomethane	2.0 U	2.0 U	2.0 U	0.5	2.0	74-83-9
Chloroethane	2.0 U	2.0 U	2.0 U	0.5	2.0	75-00-3
Trichlorofluoromethane	2.0 U	2.0 U	2.0 U	1.0	2.0	75-69-4
1,1-Dichloroethene	1.0 U	2.8	1.0 U	0.2	1.0	75-35-4
Methylene Chloride	5.0 U	5.0 U	* 28	2.0	5.0	75-09-02
Trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	0.2	1.0	156-60-5
Acetone	50 U	50 U	50 U	25	50	67-64-1
Methyl tert-Butyl Ether	1.0 U	1.0 U	1.0 U	0.2	1.0	1634-04-4
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	75-34-3
Cis-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	0.2	1.0	156-59-2
2,2-Dichloropropane	1.0 U	1.0 U	1.0 U	0.2	1.0	590-20-7
Bromochloromethane	1.0 U	1.0 U	1.0 U	0.5	1.0	74-97-5
Chloroform	1.0 U	1.3	1.0 U	0.2	1.0	67-66-3
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	0.8	1.0	56-23-5
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	71-55-6
1,1-Dichloropropene	1.0 U	1.0 U	1.0 U	0.2	1.0	563-58-6
2-Butanone (MEK)	10 U	25	10 U	5.0	10	78-93-3
Benzene	1.0 U	0.5 I	1.0 U	0.5	1.0	71-43-2
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	107-06-2
Trichloroethene	1.0 U	0.2 I	1.0 U	0.2	1.0	79-01-6
Dibromomethane	1.0 U	1.0 U	1.0 U	0.2	1.0	74-95-3
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	0.2	1.0	78-87-5
Bromodichloromethane	1.0 U	0.3 I	1.0 U	0.5	1.0	75-27-4
Cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-01-5
Toluene	1.0 U	1.0 U	1.0 U	0.5	1.0	108-88-3
Tetrachloroethene	1.0 U	1.0 U	1.0 U	0.2	1.0	127-18-4
4-Methyl-2-Pentanone (MIBK)	10 U	10 U	10 U	5.0	10	108-10-1
Trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-02-6
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	79-00-5
Dibromochloromethane	1.0 U	0.3 I	1.0 U	0.2	1.0	124-48-1
1,3-Dichloropropane	1.0 U	1.0 U	1.0 U	0.2	1.0	142-28-9
1,2-Dibromoethane (EDB)	1.0 U	1.0 U	1.0 U	0.1	1.0	106-93-4
2-Hexanone (MBK)	10 U	10 U	10 U	5.0	10	591-78-6
Chlorobenzene	1.0 U	1.0 U	1.0 U	0.2	1.0	108-90-7
Ethylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	100-41-4
1,1,1,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	630-20-6
m- & p-Xylene	2.0 U	2.0 U	2.0 U	1.0	2.0	108-38-3/106-42-3
o-Xylene	1.0 U	1.0 U	1.0 U	0.5	1.0	95-47-6

^{*} Common Laboratory Contaminant

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified FDOH Cert #: E83484 SRL Lab Ref #: 14-06032 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS (cont)

Client ID #	: EW-1	MW-5	Trip Blank			
SRL (Lab) ID#	: 1406032-005	1406032-006	1406032-007			
Date Collected	: 06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/01/14	07/01/14	07/01/14	MDL	PQL	CAS Number
Styrene	1.0 U	1.0 U	1.0 U	0.2	1.0	100-42-5
Bromoform	1.0 U	1.0 U	1.0 U	0.2	1.0	75-25-2
Isopropylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	98-82-8
Bromobenzene	1.0 U	1.0 U	1.0 U	0.2	1.0	108-86-1
n-Propylbenzene	1.0 U	1.0 U	1.0 U	0.4	1.0	103-65-1
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	79-34-5
2-Chlorotoluene	1.0 U	1.0 U	1.0 U	0.2	1.0	95-49-8
1,2,3-Trichloropropane	1.0 U	1.0 U	1.0 U	0.2	1.0	96-18-4
1,3,5-Trimethylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	108-67-8
4-Chlorotoluene	1.0 U	1.0 U	1.0 U	0.2	1.0	106-43-4
tert-Butylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	98-06-6
1,2,4-Trimethylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	95-63-6
sec-Butylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	135-98-8
p-Isopropyltoluene	1.0 U	1.0 U	1.0 U	0.2	1.0	99-87-6
1,3-Dichlorobenzene	1.0 U	1.0 U	1.0 U	0.1	1.0	541-73-1
1,4-Dichlorobenzene	1.0 U	1.0 U	1.0 U	0.1	1.0	106-46-7
n-Butylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	104-51-8
1,2-Dichlorobenzene	1.0 U	1.0 U	1.0 U	0.1	1.0	95-50-1
1,2-Dibromo-3-Chloropropane	3.0 U	3.0 U	3.0 U	1.0	3.0	96-12-8
1,2,4-Trichlorobenzene	1.0 U	1.0 U	1.0 U	0.2	1.0	120-82-1
Hexachlorobutadiene	3.0 U	3.0 U	3.0 U	2.0	3.0	87-68-3
Naphthalene	5.0 U	5.0 U	5.0 U	2.0	5.0	91-20-3
1,2,3-Trichlorobenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	87-61-6
Units	: ug/L	ug/L	ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 1	1	1	1	1	
Surrogate (% Rec)	:			(Surrogat	e Contro	l Limits)
Dibromofluoromethane	99.9%	100.3%	102.8%	, 8	70-130	,
1-2-Dichloroethane-d4	105.9%	108.6%	109.4%		70-130	
Toluene-D8	90.8%	88.7%	93.1%		70-130	
4-Bromofluorobenzene	96.8%	97.8%	96.6%		70-130	
	/ 0					

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100 **NELAP Certified** FDOH Cert #: E83484 SRL Lab Ref # : 14-06032 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669 Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA 8015C Non-Halogenated Semivolatile Organics by GC

Client ID #	: SW-1	MW-8	MW-5	Method Blank	•		
SRL (Lab) ID#	: 1406032-002	1406032-003	1406032-006	MB070814			
Date Collected	: 06/25/14	06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E82277	E82277	E82277	E82277			
Date Prepared	: 07/08/14	07/08/14	07/08/14	07/08/14			
Date Analyzed	: 07/08/14	07/08/14	07/08/14	07/08/14	MDL	PQL	CAS Number
Ethylene Glycol	8.7 U	8.7 U	8.7 U	8.7 U	8.7	10	107-21-1
Units	: mg/L	mg/L	mg/L	mg/L			
Dilution Factor (MEDF)	: 1	1	1	1			
Surrogate (% Rec)	:			(Su	rrogate	e Contro	l Limits)
1,3-Butylene Glycol	101.0%	103.0%	100.0%	105.0%		50-150	

		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: No Prep	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Ethylene Glycol	94/91/89	70-130	70-130	3	0-25

EPA 300.0 Classical Chemistry Parameters

Client ID#	:	MW-8	MW-5	Method Blan	ık		
SRL (Lab) ID#	:	1406032-003	1406032-006	MB063014			
Date Collected	:	06/25/14	06/25/14	NA			
Lab FDOH Certification #	:	E83182	E83182	E83182			
Date Prepared	:	06/30/14	06/30/14	06/30/14			
Date Analyzed	:	06/30/14	06/30/14	06/30/14	MDL	PQL	CAS Number
Fluoride		0.51	0.28	0.02 U	0.02	0.20	16984-48-8
Units	:	mg/L	mg/L	mg/L			
D'I 4' E 4 (MEDE)		4	1	4			

Dilution Factor (MEDF)

		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: No Prep	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Fluoride	101/*83/*85	90-110	90-110	2	0-10

^{*} The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified FDOH Cert #: E83484 SRL Lab Ref #: 14-06032 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

Client ID#	: MW-8	MW-5	Method Blank			
SRL (Lab) ID#	: 1406032-003	1406032-006	MB062914			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E83182	E83182	E83182			
Date Prepared	: 06/29/14	06/29/14	06/29/14			
Date Analyzed	: 07/07/14	07/07/14	07/07/14	MDL	PQL	CAS Number
1,2,4-Trichlorobenzene	3.3 U	3.3 U	3.3 U	3.3	10	120-82-1
1,2-Dichlorobenzene	3.2 U	3.2 U	3.2 U	3.2	10	95-50-1
1,3-Dichlorobenzene	3.4 U	3.4 U	3.4 U	3.4	10	541-73-1
1,4-Dichlorobenzene	3.2 U	3.2 U	3.2 U	3.2	10	106-46-7
1-Methylnaphthalene	3.1 U	3.1 U	3.1 U	3.1	10	90-12-0
2,4,5-Trichlorophenol	3.9 U	3.9 U	3.9 U	3.9	10	95-95-4
2,4,6-Trichlorophenol	6.4 U	6.4 U	6.4 U	6.4	10	88-06-2
2,4-Dichlorophenol	6.5 U	6.5 U	6.5 U	6.5	10	120-83-2
2,4-Dimethylphenol	^ 6.4 U	^ 6.4 U	6.4 U	6.4	10	105-67-9
2,4-Dinitrophenol	7.7 U	7.7 U	7.7 U	7.7	10	51-28-5
2,4-Dinitrotoluene	3.2 U	3.2 U	3.2 U	3.2	10	121-14-2
2,6-Dinitrotoluene	2.9 U	2.9 U	2.9 U	2.9	10	606-20-2
2-Chloronaphthalene	3.2 U	3.2 U	3.2 U	3.2	10	91-58-7
2-Chlorophenol	^ 7.4 U	^ 7.4 U	7.4 U	7.4	10	95-57-8
2-Methyl-4,6-dinitrophenol	6.0 U	6.0 U	6.0 U	6.0	10	534-52-1
2-Methylnaphthalene	3.8 U	3.8 U	3.8 U	3.8	10	91-57-6
2-Methylphenol	3.5 U	3.5 U	3.5 U	3.5	10	95-48-7
2-Nitroaniline	3.3 U	3.3 U	3.3 U	3.3	10	88-74-4
2-Nitrophenol	5.2 U	5.2 U	5.2 U	5.2	10	88-75-5
3 & 4-Methylphenol 3,3'-Dichlorobenzidine	8.2 U ^ 3.3 U	8.2 U ^ 3.3 U	8.2 U 3.3 U	8.2 3.3	10 10	108-39-4/106-44-5 91-94-1
3-Nitroaniline	3.3 U	3.3 U	3.3 U	3.3	10	91-94-1 99-09-2
4-Bromophenyl-phenylether	3.3 U	3.3 U	3.3 U	3.3	10	101-55-3
4-Chloro-3-methylphenol	7.3 U	7.3 U	7.3 U	7.3	10	59-50-7
4-Chloroaniline	4.3 U	4.3 U	4.3 U	4.3	10	106-47-8
4-Chlorophenyl-phenylether	3.2 U	3.2 U	3.2 U	3.2	10	7005-72-3
4-Nitroaniline	3.2 U	3.2 U	3.2 U	3.2	10	100-01-6
4-Nitrophenol	7.9 U	7.9 U	7.9 U	7.9	10	100-02-7
Acenaphthene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	83-32-9
Acenaphthylene	3.3 U	3.3 U	3.3 U	3.3	10	208-96-8
Anthracene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	120-12-7
Benzidine	7.1 U	7.1 U	7.1 U	7.1	10	92-87-5
Benzo(a)anthracene	^ 3.2 U	^ 3.2 U	3.2 U	3.2	10	56-55-3
Benzo(a)pyrene	3.1 U	3.1 U	3.1 U	3.1	10	50-32-8
Benzo(b)fluoranthene	3.4 U	3.4 U	3.4 U	3.4	10	205-99-2
Benzo(g,h,i)perylene	3.7 U	3.7 U	3.7 U	3.7	10	191-24-2
Benzo(k)fluoranthene	3.3 U	3.3 U	3.3 U	3.3	10	207-08-9
Benzoic acid	15 U	15 U	15 U	15	50	65-85-0
Benzyl alcohol	3.9 U	3.9 U	3.9 U	3.9	10	100-51-6
Bis(2-chloroethoxy)methane	^ 3.3 U	^ 3.3 U	3.3 U	3.3	10	111-91-1
Bis(2-chloroethyl)ether	^ 3.8 U	^ 3.8 U	3.8 U	3.8	10	111-44-4

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified FDOH Cert #: E83484 SRL Lab Ref #: 14-06032 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

Client ID # SRL (Lab) ID# Date Collected	: MW-8 : 1406032-003 : 06/25/14	MW-5 1406032-006 06/25/14	Method Blank MB062914 NA			
Lab FDOH Certification #	: E83182	E83182	E83182			
Date Prepared	: 06/29/14	06/29/14	06/29/14			
Date Analyzed	: 07/07/14	07/07/14	07/07/14	MDL	PQL	CAS Number
Bis(2-chloroisopropyl)ether	3.5 U	3.5 U	3.5 U	3.5	10	108-60-1
Bis(2-ethylhexyl)phthalate	3.5 U	3.5 U	3.5 U	3.5	5.0	117-81-7
Butylbenzylphthalate	^ 5.1 U	^ 5.1 U	5.1 U	5.1	10	85-68-7
Chrysene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	218-01-9
Dibenzo(a,h)anthracene	3.8 U	3.8 U	3.8 U	3.8	10	53-70-3
Dibenzofuran	2.8 U	2.8 U	2.8 U	2.8	10	132-64-9
Diethylphthalate	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	84-66-2
Dimethylphthalate	3.0 U	3.0 U	3.0 U	3.0	10	131-11-3
Di-n-butylphthalate	^ 3.2 U	^ 3.2 U	3.2 U	3.2	10	84-74-2
Di-n-octylphthalate	^ 3.6 U	^ 3.6 U	3.6 U	3.6	10	117-84-0
Fluoranthene	^ 4.0 U	^ 4.0 U	4.0 U	4.0	10	206-44-0
Fluorene	2.9 U	2.9 U	2.9 U	2.9	10	86-73-7
Hexachlorobenzene	3.0 U	3.0 U	3.0 U	3.0	10	118-74-1
Hexachlorobutadiene	4.1 U	4.1 U	4.1 U	4.1	10	87-68-3
Hexachlorocyclopentadiene	3.8 U	3.8 U	3.8 U	3.8	10	77-47-4
Hexachloroethane	3.0 U	3.0 U	3.0 U	3.0	10	67-72-1
Indeno(1,2,3-cd)pyrene	4.1 U	4.1 U	4.1 U	4.1	10	193-39-5
Isophorone	4.5 U	4.5 U	4.5 U	4.5	10	78-59-1
Naphthalene	^ 3.6 U	^ 3.6 U	3.6 U	3.6	10	91-20-3
Nitrobenzene	3.2 U	3.2 U	3.2 U	3.2	10	98-95-3
N-Nitrosodimethylamine	3.8 U	3.8 U	3.8 U	3.8	10	62-75-9
N-Nitroso-di-n-propylamine	4.5 U	4.5 U	4.5 U	4.5	10	621-64-7
N-nitrosodiphenylamine/Diphenylamine	5.4 U	5.4 U	5.4 U	5.4	10	86-30-6/122-39-4
Pentachlorophenol	^ 8.2 U	^ 8.2 U	8.2 U	8.2	10	87-86-5
Phenanthrene	^ 2.8 U	^ 2.8 U	2.8 U	2.8	10	85-01-8
Phenol	5.6 U	5.6 U	5.6 U	5.6	10	108-95-2
Pyrene	^ 4.1 U	^ 4.1 U	4.1 U	4.1	10	129-00-0
Pyridine	3.5 U	3.5 U	3.5 U	3.5	10	110-86-1
Units	ug/L	ug/L	ug/L			_
Dilution Factor (MEDF)	1	1	1			
Surrogate (% Rec)	:			(Surrogat	e Contr	ol Limits)
2,4,6-Tribromophenol	91%	123%	78%		47-128	}
2-Fluorobiphenyl	75%	90%	77%		44-102	2
2-Fluorophenol	49%	65%	46%		25-79	
Nitrobenzene-d5	70%	92%	77%		43-112	
Phenol-d5	38%	50%	32%		14-54	
Terphenyl-d14	122%	* 128%	* 135%		65-122	2

^{*} Value is outside control limits.

[^] The associated laboratory control sample exhibited high bias; since the result is ND, the impact on data quality is minimal.

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified

FDOH Cert # : E83484 SRL Lab Ref # : 14-06032 Received Date : 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

Metals (total recoverable) by EPA 6000/7000 Series Methods

Client ID#	: SW-1	MW-8	MW-5	Method Blank
SRL (Lab) ID#	: 1406032-002	1406032-003	1406032-006	MB070114
Date Collected	: 06/25/14	06/25/14	06/25/14	NA
Lab FDOH Certification #	: E82277	E82277	E82277	E82277
Date Prepared	: 07/01/14	07/01/14	07/01/14	07/01/14
Date Analyzed	: 07/02/14	07/02/14	07/02/14	07/02/14 MDL PQL CAS Number
Aluminum	1550	343	1860	86.0 U 86.0 200 7429-90-5
Antimony	5.65 U	5.65 U	5.65 U	5.65 U 5.65 40.0 7440-36-0
Arsenic	7.12 U	7.12 U	7.12 U	7.12 U 7.12 10.0 7440-38-2
Barium	30.3	7.88 J	21.9	0.630 U 0.630 10.0 7440-39-3
Boron	111	88.5	86.6	6.24 U 6.24 50.0 7440-42-8
Cadmium	0.263 J	0.521 J	0.778 J	0.170 U 0.170 1.00 7440-43-9
Chromium	5.54 J	1.30 U	7.63 J	1.30 U 1.30 10.0 7440-47-3
Copper	1.09 J	0.940 U	0.940 U	0.940 U 0.940 10.0 7440-50-8
Lead	3.65 J	2.20 U	2.78 J	2.20 U 2.20 10.0 7439-92-1
Selenium	6.60 U	6.60 U	6.60 U	6.60 U 6.60 40.0 7782-49-2
Sodium	6560	13400	13800	56.0 U 56.0 500 7440-23-5
Tin	5.92 J	5.40 U	5.40 U	5.40 U 5.40 40.0 7440-31-5
Units	: ug/L	ug/L	ug/L	ug/L
Dilution Factor (MEDF)	: 1	1	1	1

Metals (total recoverable) by EPA 6000/7000 Series Methods

Client ID #	: SW-1	MW-8	MW-5	Method Blan	k	
SRL (Lab) ID#	: 1406032-002	1406032-003	1406032-006	MB070714		
Date Collected	: 06/25/14	06/25/14	06/25/14	NA		
Lab FDOH Certification #	: E83182	E83182	E83182	E83182		
Date Prepared	: 07/07/14	07/07/14	07/07/14	07/07/14		
Date Analyzed	: 07/08/14	07/08/14	07/08/14	07/08/14	MDL PQL	CAS Number
Mercury	0.109 J	0.0230 U	0.0367 J	0.0230 U	0.0230 0.200	7439-97-6
Units	: ug/L	ug/L	ug/L	ug/L		
Dilution Factor (MEDF)	: 1	1	1	1		

Metals (Dissolved) by EPA 6000/7000 Series Methods

Client ID #	: SW-1	MW-8	MW-5	Method Blank		
SRL (Lab) ID#	: 1406032-002	1406032-003	1406032-006	MB071414		
Date Collected	: 06/25/14	06/25/14	06/25/14	NA		
Lab FDOH Certification #	: E82277	E82277	E82277	E82277		
Date Prepared	: 07/14/14	07/14/14	07/14/14	07/14/14		
Date Analyzed	: 07/15/14	07/15/14	07/15/14	07/15/14 MDL	PQL	CAS Number
Aluminum	246	283	275	86.0 U 86.0	200	7429-90-5

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified FDOH Cert #: E83484 SRL Lab Ref #: 14-06032 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

QAQC (SVOCs) Prep Method: EPA 3510C	% Recovery LCS/MS/MSD	LCS Acceptable Limits	MS/MSD Acceptable Limits	%RPD MS/MSD	Acceptable Limits
1,2,4-Trichlorobenzene	85/51/65	20-95	20-95	24	0-32
1,4-Dichlorobenzene	86/56/66	17-94	17-94	16	0-34
2,4-Dinitrotoluene	105/93/91	63-120	63-120	2	0-23
2-Chlorophenol	* 101/67/74	50-97	50-97	10	0-27
4-Chloro-3-methylphenol	101/61/75	54-108	54-108	22	0-28
4-Nitrophenol	46/40/32	10-129	10-129	20	0-35
Acenaphthene	* 102/64/80	50-95	50-95	22	0-27
N-Nitroso-di-n-propylamine	121/78/85	53-124	53-124	8	0-24
Pentachlorophenol	* 110/101/92	27-100	27-100	10	0-26
Phenol	44/24/25	14-54	14-54	7	0-32
Pyrene	* 135/122/105	61-115	61-115	15	0-28
		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: EPA 3005A	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Aluminum	101/100/102	80-120	75-125	1	0-20
Antimony	102/102/103	80-120	75-125	0.8	0-20
Arsenic	104/103/105	80-120	75-125	2	0-20
Barium	102/102/103	80-120	75-125	1	0-20
Boron	102/102/103	80-120	75-125	1	0-20
Cadmium	105/104/105	80-120	75-125	1	0-20
Chromium	102/102/103	80-120	75-125	1	0-20
Copper	103/103/104	80-120	75-125	1	0-20
Lead	105/104/106	80-120	75-125	1	0-20
Selenium	102/97/98	80-120	75-125	1	0-20
Sodium	103/101/103	80-120	75-125	2	0-20
Tin	102/101/102	80-120	75-125	1	0-20
		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: EPA 3005A	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Aluminum, Dissolved	99/99/97	80-120	75-125	3	0-20
		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: EPA 7470A	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Mercury	97/94/96	80-120	75-125	1	0-20

^{*} The associated laboratory control sample exhibited high bias; since the result is ND, the impact on data quality is minimal.

Southern Research Laboratories, Inc.

NELAP Certified

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100 Received Date : 06/27/14

Bridget Morello

Project Number/Project Name

FDOH Cert #: E83484

City Of Tampa

Tampa, FL

SRL Lab Ref #: 14-06032

P9000

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

DATA QUALIFIER CODES

Reporting Exceptions and Qualified Data

When quality control results are outside established control limits reanalysis, including re-extraction (if applicable), is preferred. If re-analysis is not viable or desirable, then results may be qualified. Sample results associated with quality control data that exceed acceptance criteria will be qualified with an appropriate comment.

 \mathbf{D} = Data reported from a dilution and or multiple dilutions.

D5=1/5, D10= 1/10, D20= 1/20, D50= 1/50, D100= 1/100, D200= 1/200, D1= 1/1000

- J = Estimated Value, The reported value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL)
- L = Off-Scale high; exceeds the linear range or highest calibration standard.
- O = Sampled, but analysis lost or not performed
- **Q** = Sample held beyond normal holding time
- $\mathbf{U}=$ indicates the compound was analyzed for, but not detected. The numerical value preceding the "U" is the limit of detection for that compound based upon the dilution. $\mathbf{MEDF}=\mathbf{Matrix}\ \mathbf{Effected}\ \mathbf{Dilution}\ \mathbf{Factor}$.
- V = Analyte was detected in both the sample and associated Laboratory Method Blank; Laboratory Contamination
- \mathbf{Y} = The analysis was from an unpreserved or improperly preserved sample. The data may not be accurate

Unless otherwise noted, ug/Kg and mg/Kg denote dry weight.

(SOILS) Actual Reporting Limit will depend on moisture content of sample and the amount of sample received.

Quality Assurance/Quality Control Report

Client: Progressive Engineering & Construction, Inc. SRL# 1406032

Project: P9000 QC07011404.D

City Of Tampa Tampa, FL

MSQC070114 18-19.D

Parent Sample 07011417.D (DW-1)

VOC Analytes	Method Blank Value	LCS Obs. Value	LCS True Value	LCS % Rec.	Sample Value	Spike Amount Added	MS Value	MSD Value	MS % Rec.	MSD % Rec.	% Rec. Control Lower Limit	% Rec. Control Upper Limit	% RPD	RPD Control Limits
1,1-Dichloroethene (8)	0	28.2	25.0	113	0	25.0	30.2	30.6	121	122	70	130	1.3	30
Trans-1-2-Dichloroethene (11)	0	27.2	25.0	109	0	25.0	27.8	28.9	111	116	70	130	3.9	30
Chloroform (19)	0	24.5	25.0	98	0.6	25.0	26.5	25.8	103	101	70	130	2.6	30
Benzene (25)	0	22.5	25.0	90	0	25.0	23.1	23.4	92	94	70	130	1.5	30
Trichloroethene (28)	0	25.1	25.0	100	3.0	25.0	28.7	28.9	103	104	70	130	0.6	30
1,2-Dichloropropane (31)	0	22.5	25.0	90	0	25.0	22.8	23.3	91	93	70	130	2.3	30
Toluene (35)	0	24.6	25.0	98	0	25.0	25.1	24.0	100	96	70	130	4.4	30
Tetrachloroethene (36)	0	26.7	25.0	107	8.6	25.0	34.1	33.2	102	98	70	130	2.4	30
Chlorobenzene (44)	0	22.0	25.0	88	0	25.0	22.3	20.6	89	83	70	130	7.7	30
Ethylbenzene (45)	0	25.6	25.0	102	0	25.0	26.1	24.3	104	97	70	130	6.9	30
o-Xylene (48)	0	23.3	25.0	93	0	25.0	23.3	21.6	93	86	70	130	7.4	30
Surrogates:									_					
Dibromofluoromethane	101	9.9	10	98.9	94.7	10	10.5	10.9	105	109	70	130	3.4	30
1.2-Dichloroethane-D4	107	10.6	10	106	108	10	10.9	11.3	109	113	70	130	3.9	30
Toluene-D8	90.5	9.2	10	92.2	91.5	10	9.0	9.8	90.2	98.4	70	130	8.7	30
4-Bromofluorobenzene	97.3	9.7	10	96.6	97.3	10	9.2	9.8	92.4	98.0	70	130	5.9	30

07011402.D

SRL Quality Assurance Officer

Chain of Custody Project Manager: of Page 2251 Lynx Lane, Suite #1 outhern Company: Project Name: Orlando, Florida 32804 esearch aboratories, Inc. Address: City of Tames 3912 West Fi City, State, Zip: Project Location: (407) 522-7100 33614 Phone: Tampe, FL Toll Free 1 (888) 420-TEST Fax: (407) 522-7043 +1 (915) 950-0669 +1 (813) 930-9809 Sampled by [Print Name(s)] / Affiliation: Preservatives (see codes) Project Number: C. Nichols / PEC Sampler(s) Signature(s): REQUESTED DUE DATE: Analyses Requested by dissolved Std ethy line glyco metals-total Total Number of Containers Sampling QAP No.: かるし Approval Date: Grab or Composite SUOC Sample Identification Sampled Matrix: (codes) Date: Time: Comments: 4 DW-2 G GW 14 06032 do1 1-42 (W (1) 1555 metals samples unti 6/25/14 MW-8 (2) results of TOTAL metals 6/25/14 1 \bigcirc 6 6W 12 2 EW-2 6 1407 CW ७१२५१५। Tyres 004 auall EW-1 6/25/14 1347 2 005 Ġ 6W whaire o approve 3 Mw-5 6 GW 12 6/65/14 1238 حالىل 6/28/14 6 447 Shipment Method: Relinquished by: / Affiliation: Date: Time: Accepted by: / Affiliation: Time: Date: D:30 6/17/ 1250 Out: / / Via: 126/14 1100 14:10 Via: Returned: Additional Comments: 4316 1000 tany + 200-Cooler No.(s) / Temperature(s) (°C): Sampling Kit No.: Equipment ID No.: SO = Soit SW = Surface Water W = Water(Blanks) HW = Potential Haz Waste Matrix Codes: A = AirGW = Groundwater SE = Sediment O = Other(Specify: Preservative Codes: H = Hydrochloric Acid & Ice I = Ice Only N = Nitric Acid & Ice S = Sulfuric Acid & Ice X = Sodium Hydroxide & Ice O = Other(Specify)

Thank you **Ms. Bridget Morello** for the opportunity to be of service to you and your company; we **S**incerely **A**ppreciate **Y**our **B**usiness. SRL certifies these **Laboratory Results** were produced in accordance with NELAC Standards. Hold times and preservation requirements were met for all analytes unless specifically noted in the report. Results relate only to the samples as received.

Client Name: Progressive Eng. & Construction, Inc.	Date(s) Collected: 06/25-06/26/14
Contact Name: Bridget Morello	Date Received: 06/27/14
Project Name: City of Tampa	Time Received: 14:10
Project Number: P9000	Date Reported: 07/08/14
Phone Number: (813) 930-0669	Date Emailed: 07/08/14
Fax Number: (813) 930-9809	SRL Work Order # 14-06033

R1 071714

SRL WO#	Clients #	Matrix	Analysis Requested
14-06033-001	MW-4	Liquid	8260(VOC)
14-06033-002	Soil Preburn	Soilid	TCLP VOCs/TCLP 4-RCRA Metals
14-06033-003	GW De Water	Liquid	TCLP 4-RCRA Metals
14-06033-004	MW-6	Liquid	* EPA 8260(VOC)/8260-SIM(1,4-Dioxane) Aluminum/Antimony/Arsenic /Barium/ Boron/Cadmium /Chromium/Lead/ Copper/Selenium /Sodium/Tin/
14-06033-005	MW-7	Liquid	Mercury/Fluoride/SVOCs/ Ethylene glycol * EPA 8260(VOC)/8260-SIM(1,4-Dioxane)
			Aluminum/Antimony/Arsenic /Barium/ Boron/Cadmium /Chromium/Lead/ Copper/Selenium /Sodium/Tin/ Mercury/Fluoride/SVOCs/ Ethylene glycol
14-06033-006	DW-1	Liquid	EPA 8260(VOC)/8260-SIM(1,4-Dioxane)
14-06033-007	Trip Blank	Liquid	EPA 8260(VOC)/8260-SIM(1,4-Dioxane)

Nonconformance: This report is an amendment to the original report dated June 08, 2014 for this work order. Additional Information: The samples listed above (*) were originally on hold per client request. After the final report was issued, the client requested dissolved Aluminum analysis of these samples. The results are included in this revised report.

Affected Samples: MW-6 [1406033-004], MW-7 [1406033-005]

Sherri Payne

Vice President & Quality Assurance Officer Southern Research Laboratories, Inc.

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Bridget Morello

Orlando, Florida 32804 (407) 522-7100

NELAP Certified

FDOH Cert # : E83484 SRL Lab Ref # : 14-06033 Received Date : 06/27/14

Project Number/Project Name

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

P9000

MDL

PQL

CAS Number

City Of Tampa Tampa, FL

EPA Method 8260B 1,4-Dioxane in Water by GC-MS Method 8260 Purge and Trap using Gas Chromatography/Mass Spectrometry and Selective Ion Monitoring (SIM)

Client ID #	: MW-6	MW-7	DW-1	Trip Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	1406033-006	1406033-007			
Date Collected	: 06/25/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/03/14	07/03/14	07/03/14	07/03/14			
Date Analyzed	: 07/03/14	07/03/14	07/03/14	07/03/14	MDL	PQL	CAS Number
1,4-Dioxane	1.0 U	1.0 U	0.5 U	0.5 U	0.5	1.0	123-91-1
Units	: ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 2	2	1	1	1	1	
Surrogate (% Rec)	:			(S	Surrogat	e Contro	l Limits)
Dioxane-d8	125.6%	123.3%	120.0%	117.2%		70-130	

Client ID # : Method Blank
SRL (Lab) ID# : MB070314

Date Collected : NA
Lab FDOH Certification # : E83484
Date Prepared : 07/03/14
Date Analyzed : 07/03/14

123-91-1 1,4-Dioxane 0.5 U 0.5 1.0 Units : ug/L ug/L ug/L **Dilution Factor (MEDF)** : 1 Surrogate (% Rec) (Surrogate Control Limits) Dioxane-d8 100.0% 70-130

 $\begin{array}{c|ccccc} & \mbox{\% Recovery} & \mbox{Acceptable} & \mbox{\% RPD} & \mbox{Acceptable} \\ & \mbox{LCS/MS/MSD} & \mbox{Limits} & \mbox{MS/MSD} & \mbox{Limits} \\ 1,4\text{-Dioxane} & \mbox{97/93/106} & 70\text{-}130 & 11 & 0\text{-}30 \\ \end{array}$

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

NELAP Certified

FDOH Cert # : E83484 SRL Lab Ref # : 14-06033

Received Date: 06/27/14

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS

Client ID # SRL (Lab) ID#	: MW-4 : 1406033-001	MW-6 1406033-004	MW-7 1406033-005	DW-1 1406033-006			
Date Collected	: 06/26/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/01/14	07/01/14	07/01/14	07/01/14			
Units	: ug/L	ug/L	ug/L	ug/L	MDL	PQL	CAS Number
Dichlorodifluoromethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	75-71-8
Chloromethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	74-87-3
Vinyl Chloride	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-01-4
Bromomethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	74-83-9
Chloroethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	75-00-3
Trichlorofluoromethane	2.0 U	2.0 U	2.0 U	2.0 U	1.0	2.0	75-69-4
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-35-4
Methylene Chloride	5.0 U	5.0 U	5.0 U	5.0 U	2.0	5.0	75-09-02
Trans-1,2-Dichloroethene	1.0 U	0.4 J	1.0 U	1.0 U	0.2	1.0	156-60-5
Acetone	50 U	50 U	50 U	50 U	25	50	67-64-1
Methyl tert-Butyl Ether	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	1634-04-4
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	0.8 J	0.2	1.0	75-34-3
Cis-1,2-Dichloroethene	1.0 U	3.0	1.0 U	0.8	0.2	1.0	156-59-2
2,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	590-20-7
Bromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	74-97-5
Chloroform	1.0 U	1.0 U	0.4 J	0.6 J	0.2	1.0	67-66-3
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	0.8	1.0	56-23-5
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	71-55-6
1,1-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	563-58-6
2-Butanone (MEK)	10 U	10 U	10 U	10 U	5.0	10	78-93-3
Benzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	71-43-2
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	107-06-2
Trichloroethene	1.0 U	2.2	1.0 U	3.0	0.2	1.0	79-01-6
Dibromomethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	74-95-3
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	78-87-5
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	75-27-4
Cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-01-5
Toluene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	108-88-3
Tetrachloroethene	20	0.5 J	1.0	8.6	0.2	1.0	127-18-4
4-Methyl-2-Pentanone (MIBK)	10 U	10 U	10 U	10 U	5.0	10	108-10-1
Trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-02-6
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	79-00-5
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	124-48-1
1,3-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	142-28-9
1,2-Dibromoethane (EDB)	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	106-93-4
2-Hexanone (MBK)	10 U	10 U	10 U	10 U	5.0	10	591-78-6
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	108-90-7
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	100-41-4
1,1,1,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	630-20-6
m- & p-Xylene	2.0 U	2.0 U	2.0 U	2.0 U	1.0	2.0	108-38-3/106-42-3
o-Xylene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	95-47-6

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

SRL Lab Ref #: 14-06033 Orlando, Florida 32804 (407) 522-7100 Received Date: 06/27/14

Project Number/Project Name

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

P9000

City Of Tampa Tampa, FL

NELAP Certified

FDOH Cert # : E83484

EPA Method 5030/8260B Volatile Organics in Water by GC-MS (cont)

Client ID #	: MW-4	MW-6	MW-7	DW-1			
SRL (Lab) ID#	: 1406033-001	1406033-004	1406033-005	1406033-000	b		
Date Collected	: 06/26/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14	07/01/14		202	a.a
Date Analyzed	: 07/01/14	07/01/14	07/01/14	07/01/14	MDL	PQL	CAS Number
Styrene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	100-42-5
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-25-2
Isopropylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	98-82-8
Bromobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	108-86-1
n-Propylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.4	1.0	103-65-1
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	79-34-5
2-Chlorotoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	95-49-8
1,2,3-Trichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	96-18-4
1,3,5-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	108-67-8
4-Chlorotoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	106-43-4
tert-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	98-06-6
1,2,4-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	95-63-6
sec-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	135-98-8
p-Isopropyltoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	99-87-6
1,3-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	541-73-1
1,4-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	106-46-7
n-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	104-51-8
1,2-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	95-50-1
1,2-Dibromo-3-Chloropropane	3.0 U	3.0 U	3.0 U	3.0 U	1.0	3.0	96-12-8
1,2,4-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	120-82-1
Hexachlorobutadiene	3.0 U	3.0 U	3.0 U	3.0 U	2.0	3.0	87-68-3
Naphthalene	5.0 U	5.0 U	5.0 U	5.0 U	2.0	5.0	91-20-3
1,2,3-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	87-61-6
Units	: ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 1	1	1	1	1	1	
Surrogate (% Rec)	:			(Surrogat	e Control	Limits)
Dibromofluoromethane	102.2%	99.3%	104.1%	94.7%	_	70-130	•
1-2-Dichloroethane-d4	113.2%	107.6%	113.4%	108.1%		70-130	
Toluene-D8	88.8%	89.7%	87.0%	91.5%		70-130	
4-Bromofluorobenzene	97.5%	97.2%	99.5%	97.3%		70-130	

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified FDOH Cert #: E83484 SRL Lab Ref #: 14-06033 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS

Client ID #	: Trip Blank			
SRL (Lab) ID#	: 1406033-007			
Date Collected	: 06/25/14			
Lab FDOH Certification #	: E83484			
Date Prepared	: 07/01/14			
Date Analyzed	: 07/01/14			
Units	: ug/L	MDL	PQL	CAS Number
Dichlorodifluoromethane	2.0 U	0.5	2.0	75-71-8
Chloromethane	2.0 U	0.5	2.0	74-87-3
Vinyl Chloride	1.0 U	0.2	1.0	75-01-4
Bromomethane	2.0 U	0.5	2.0	74-83-9
Chloroethane	2.0 U	0.5	2.0	75-00-3
Trichlorofluoromethane	2.0 U	1.0	2.0	75-69-4
1,1-Dichloroethene	1.0 U	0.2	1.0	75-35-4
Methylene Chloride	* 29	2.0	5.0	75-09-02
Trans-1,2-Dichloroethene	1.0 U	0.2	1.0	156-60-5
Acetone	50 U	25	50	67-64-1
Methyl tert-Butyl Ether	1.0 U	0.2	1.0	1634-04-4
1,1-Dichloroethane	1.0 U	0.2	1.0	75-34-3
Cis-1,2-Dichloroethene	1.0 U	0.2	1.0	156-59-2
2,2-Dichloropropane	1.0 U	0.2	1.0	590-20-7
Bromochloromethane	1.0 U	0.5	1.0	74-97-5
Chloroform	1.0 U	0.2	1.0	67-66-3
Carbon tetrachloride	1.0 U	0.8	1.0	56-23-5
1,1,1-Trichloroethane	1.0 U	0.2	1.0	71-55-6
1,1-Dichloropropene	1.0 U	0.2	1.0	563-58-6
2-Butanone (MEK)	10 U	5.0	10	78-93-3
Benzene	1.0 U	0.5	1.0	71-43-2
1,2-Dichloroethane	1.0 U	0.2	1.0	107-06-2
Trichloroethene	1.0 U	0.2	1.0	79-01-6
Dibromomethane	1.0 U	0.2	1.0	74-95-3
1,2-Dichloropropane	1.0 U	0.2	1.0	78-87-5
Bromodichloromethane	1.0 U	0.5	1.0	75-27-4
Cis-1,3-Dichloropropene	1.0 U	0.2	1.0	10061-01-5
Toluene	1.0 U	0.5	1.0	108-88-3
Tetrachloroethene	1.0 U	0.2	1.0	127-18-4
4-Methyl-2-Pentanone (MIBK)	10 U	5.0	10	108-10-1
Trans-1,3-Dichloropropene	1.0 U	0.2	1.0	10061-02-6
1,1,2-Trichloroethane	1.0 U	0.2	1.0	79-00-5
Dibromochloromethane	1.0 U	0.2	1.0	124-48-1
1,3-Dichloropropane	1.0 U	0.2	1.0	142-28-9
1,2-Dibromoethane (EDB)	1.0 U	0.1	1.0	106-93-4
2-Hexanone (MBK)	10 U	5.0	10	591-78-6
Chlorobenzene	1.0 U	0.2	1.0	108-90-7
Ethylbenzene	1.0 U	0.5	1.0	100-41-4
1,1,1,2-Tetrachloroethane	1.0 U	0.2	1.0	630-20-6
m- & p-Xylene	2.0 U	1.0	2.0	108-38-3/106-42-3
o-Xylene	1.0 U	0.5	1.0	95-47-6
o riyiciic	1.0	0.5	1.0)5 TI-0

^{*} Common Laboratory Contaminant

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified

FDOH Cert # : E83484 SRL Lab Ref # : 14-06033

Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa

Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS (cont)

Client ID #	: Trip Blank
CHEIR ID#	. Trip blank
SRL (Lab) ID#	: 1406033-007
Date Collected	: 06/25/14
Lab FDOH Certification #	: E83484
Date Prepared	: 07/01/14
	07/01/14

Date Prepared	: 07/01/14			
Date Analyzed	: 07/01/14	MDL	PQL	CAS Number
Styrene	1.0 U	0.2	1.0	100-42-5
Bromoform	1.0 U	0.2	1.0	75-25-2
Isopropylbenzene	1.0 U	0.5	1.0	98-82-8
Bromobenzene	1.0 U	0.2	1.0	108-86-1
n-Propylbenzene	1.0 U	0.4	1.0	103-65-1
1,1,2,2-Tetrachloroethane	1.0 U	0.2	1.0	79-34-5
2-Chlorotoluene	1.0 U	0.2	1.0	95-49-8
1,2,3-Trichloropropane	1.0 U	0.2	1.0	96-18-4
1,3,5-Trimethylbenzene	1.0 U	0.5	1.0	108-67-8
4-Chlorotoluene	1.0 U	0.2	1.0	106-43-4
tert-Butylbenzene	1.0 U	0.5	1.0	98-06-6
1,2,4-Trimethylbenzene	1.0 U	0.5	1.0	95-63-6
sec-Butylbenzene	1.0 U	0.5	1.0	135-98-8
p-Isopropyltoluene	1.0 U	0.2	1.0	99-87-6
1,3-Dichlorobenzene	1.0 U	0.1	1.0	541-73-1
1,4-Dichlorobenzene	1.0 U	0.1	1.0	106-46-7
n-Butylbenzene	1.0 U	0.5	1.0	104-51-8
1,2-Dichlorobenzene	1.0 U	0.1	1.0	95-50-1
1,2-Dibromo-3-Chloropropane	3.0 U	1.0	3.0	96-12-8
1,2,4-Trichlorobenzene	1.0 U	0.2	1.0	120-82-1
Hexachlorobutadiene	3.0 U	2.0	3.0	87-68-3
Naphthalene	5.0 U	2.0	5.0	91-20-3
1,2,3-Trichlorobenzene	1.0 U	 0.5	1.0	87-61-6
Units	: 110/L	 ησ/Ι.	пσ/Г.	

 Units
 : ug/L
 ug/L
 ug/L

 Dilution Factor (MEDF)
 : 1
 1
 1

 Suppose to (%/ Rec)
 (%/ Rec)
 (%/ Rec)
 (%/ Rec)

Surrogate (% Rec):Dibromofluoromethane101.8%1-2-Dichloroethane-d4111.2%Toluene-D890.7%4-Bromofluorobenzene98.0%

(Surrogate Control Limits)
70-130
70-130
70-130
70-130

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100 **NELAP Certified** FDOH Cert #: E83484 SRL Lab Ref #: 14-06033 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669 Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA 8015C Non-Halogenated Semivolatile Organics by GC

Client ID#	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	MB070814			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E82277	E82277	E82277			
Date Prepared	: 07/08/14	07/08/14	07/08/14			
Date Analyzed	: 07/08/14	07/08/14	07/08/14	MDL	PQL	CAS Number
Ethylene Glycol	8.7 U	8.7 U	8.7 U	8.7	10	107-21-1
Units	: mg/L	mg/L	mg/L			
Dilution Factor (MEDF)	: 1	1	1			
Surrogate (% Rec)	:			(Surrogat	e Contro	l Limits)
1.3 Rutylana Glycol	106.004	101 0%	105 0%		50 150	

1,3-Butylene Glycol 106.0% 101.0% 105.0% 50-150

		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: No Prep	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Ethylene Glycol	94/91/89	70-130	70-130	3	0-25

EPA 300.0 Classical Chemistry Parameters

Client ID#	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	MB063014			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E83182	E83182	E83182			
Date Prepared	: 06/30/14	06/30/14	06/30/14			
Date Analyzed	: 06/30/14	06/30/14	06/30/14	MDL	PQL	CAS Number
Fluoride	0.24	0.35	0.02 U	0.02	0.20	16984-48-8
Units	: mg/L	mg/L	mg/L			

Dilution Factor (MEDF) : 1 1

		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: No Prep	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Fluoride	101/*83/*85	90-110	90-110	2	0-10

^{*} The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified FDOH Cert #: E83484 SRL Lab Ref #: 14-06033

Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

Metals (total recoverable) by EPA 6000/7000 Series Methods

Client ID #	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	MB070114			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E82277	E82277	E82277			
Date Prepared	: 07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/02/14	07/02/14	07/02/14	MDL	PQL	CAS Number
Aluminum	275	339	86.0 U	86.0	200	7429-90-5
Antimony	5.65 U	5.65 U	5.65 U	5.65	40.0	7440-36-0
Arsenic	7.12 U	7.12 U	7.12 U	7.12	10.0	7440-38-2
Barium	26.6	12.7	0.630 U	0.630	10.0	7440-39-3
Boron	1760	109	6.24 U	6.24	50.0	7440-42-8
Cadmium	0.170 U	0.170 U	0.170 U	0.170	1.00	7440-43-9
Chromium	1.30 U	1.30 U	1.30 U	1.30	10.0	7440-47-3
Copper	0.940 U	0.940 U	0.940 U	0.940	10.0	7440-50-8
Lead	2.20 U	2.20 U	2.20 U	2.20	10.0	7439-92-1
Selenium	6.60 U	6.60 U	6.60 U	6.60	40.0	7782-49-2
Sodium	12900	5250	56.0 U	56.0	500	7440-23-5
Tin	6.23 J	5.40 U	5.40 U	5.40	40.0	7440-31-5
Units	: ug/L	ug/L	ug/L			
Dilution Factor (MEDF)	: 1	1	1			

Metals (total recoverable) by EPA 6000/7000 Series Methods

Client ID#	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	MB070714			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E82277	E82277	E82277			
Date Prepared	: 07/07/14	07/07/14	07/07/14			
Date Analyzed	: 07/08/14	07/08/14	07/08/14	MDL	PQL	CAS Number
Mercury	0.0230 U	0.0230 U	0.0230 U	0.0230	0.200	7439-97-6
Units	: ug/L	ug/L	ug/L			
Dilution Factor (MEDF)	: 1	1	1			

Metals (Dissolved) by EPA 6000/7000 Series Methods

Client ID#	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	MB071414			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E82277	E82277	E82277			
Date Prepared	: 07/14/14	07/14/14	07/14/14			
Date Analyzed	: 07/15/14	07/15/14	07/15/14	MDL	PQL	CAS Number
Aluminum	202	322	860 U	86.0	200	7429-90-5

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified FDOH Cert #: E83484 SRL Lab Ref #: 14-06033 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

Client ID #	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	4 1406033-005	MB062914			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E83182	E83182	E83182			
Date Prepared	: 06/29/14	06/29/14	06/29/14			
Date Analyzed	: 07/07/14	07/07/14	07/07/14	MDL	PQL	CAS Number
1,2,4-Trichlorobenzene	3.3 U	3.3 U	3.3 U	3.3	10	120-82-1
1,2-Dichlorobenzene	3.2 U	3.2 U	3.2 U	3.2	10	95-50-1
1,3-Dichlorobenzene	3.4 U	3.4 U	3.4 U	3.4	10	541-73-1
1,4-Dichlorobenzene	3.2 U	3.2 U	3.2 U	3.2	10	106-46-7
1-Methylnaphthalene	3.1 U	3.1 U	3.1 U	3.1	10	90-12-0
2,4,5-Trichlorophenol	3.9 U	3.9 U	3.9 U	3.9	10	95-95-4
2,4,6-Trichlorophenol	6.4 U	6.4 U	6.4 U	6.4	10	88-06-2
2,4-Dichlorophenol	6.5 U	6.5 U	6.5 U	6.5	10	120-83-2
2,4-Dimethylphenol	^ 6.4 U	^ 6.4 U	6.4 U	6.4	10	105-67-9
2,4-Dinitrophenol	7.7 U	7.7 U	7.7 U	7.7	10	51-28-5
2,4-Dinitrotoluene	3.2 U	3.2 U	3.2 U	3.2	10	121-14-2
2,6-Dinitrotoluene	2.9 U	2.9 U	2.9 U	2.9	10	606-20-2
2-Chloronaphthalene	3.2 U	3.2 U	3.2 U	3.2	10	91-58-7
2-Chlorophenol	^ 7.4 U	^ 7.4 U	7.4 U	7.4	10	95-57-8
2-Methyl-4,6-dinitrophenol	6.0 U	6.0 U	6.0 U	6.0	10	534-52-1
2-Methylnaphthalene	3.8 U	3.8 U	3.8 U	3.8	10	91-57-6
2-Methylphenol	3.5 U	3.5 U	3.5 U	3.5	10	95-48-7
2-Nitroaniline	3.3 U	3.3 U	3.3 U	3.3	10	88-74-4
2-Nitrophenol	5.2 U	5.2 U	5.2 U	5.2	10	88-75-5
3 & 4-Methylphenol	8.2 U	8.2 U	8.2 U	8.2	10	108-39-4/106-44-5
3,3'-Dichlorobenzidine	^ 3.3 U	^ 3.3 U	3.3 U	3.3	10	91-94-1
3-Nitroaniline	3.3 U	3.3 U	3.3 U	3.3	10	99-09-2
4-Bromophenyl-phenylether	3.3 U	3.3 U	3.3 U	3.3	10	101-55-3
4-Chloro-3-methylphenol	7.3 U	7.3 U	7.3 U	7.3	10	59-50-7
4-Chloroaniline	4.3 U	4.3 U	4.3 U	4.3	10	106-47-8
4-Chlorophenyl-phenylether	3.2 U	3.2 U	3.2 U	3.2	10	7005-72-3
4-Nitroaniline	3.2 U	3.2 U	3.2 U	3.2	10	100-01-6
4-Nitrophenol	7.9 U	7.9 U	7.9 U	7.9	10	100-02-7
Acenaphthene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	83-32-9
Acenaphthylene	3.3 U	3.3 U	3.3 U	3.3	10	208-96-8
Anthracene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	120-12-7
Benzidine	7.1 U	7.1 U	7.1 U	7.1	10	92-87-5
Benzo(a)anthracene	^ 3.2 U	^ 3.2 U	3.2 U	3.2	10	56-55-3
Benzo(a)pyrene	3.1 U	3.1 U	3.1 U	3.1	10	50-32-8
Benzo(b)fluoranthene	3.4 U	3.4 U	3.4 U	3.4	10	205-99-2
Benzo(g,h,i)perylene	3.7 U	3.7 U	3.7 U	3.7	10	191-24-2
Benzo(k)fluoranthene	3.3 U	3.3 U	3.3 U	3.3	10	207-08-9
Benzoic acid	15 U	15 U	15 U	15	50	65-85-0
Benzyl alcohol	3.9 U	3.9 U	3.9 U	3.9	10	100-51-6
Bis(2-chloroethoxy)methane	^ 3.3 U	^ 3.3 U	3.3 U	3.3	10	111-91-1
Bis(2-chloroethyl)ether	^ 3.8 U	^ 3.8 U	3.8 U	3.8	10	111-44-4
210(2 cmorocury)/cure	5.0	5.0 0	5.0 0	5.0	10	111 77-7

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified FDOH Cert #: E83484 SRL Lab Ref #: 14-06033 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

Client ID # SRL (Lab) ID#	: MW-6 : 1406033-004	MW-7 1406033-005	Method Blank MB062914			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E83182	E83182	E83182			
Date Prepared	: 06/29/14	06/29/14	06/29/14			
Date Analyzed	: 07/07/14	07/07/14	07/07/14	MDL	PQL	CAS Number
Bis(2-chloroisopropyl)ether	3.5 U	3.5 U	3.5 U	3.5	10	108-60-1
Bis(2-ethylhexyl)phthalate	3.5 U	3.5 U	3.5 U	3.5	5.0	117-81-7
Butylbenzylphthalate	^ 5.1 U	^ 5.1 U	5.1 U	5.1	10	85-68-7
Chrysene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	218-01-9
Dibenzo(a,h)anthracene	3.8 U	3.8 U	3.8 U	3.8	10	53-70-3
Dibenzofuran	2.8 U	2.8 U	2.8 U	2.8	10	132-64-9
Diethylphthalate	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	84-66-2
Dimethylphthalate	3.0 U	3.0 U	3.0 U	3.0	10	131-11-3
Di-n-butylphthalate	^ 3.2 U	^ 3.2 U	3.2 U	3.2	10	84-74-2
Di-n-octylphthalate	^ 3.6 U	^ 3.6 U	3.6 U	3.6	10	117-84-0
Fluoranthene	^ 4.0 U	^ 4.0 U	4.0 U	4.0	10	206-44-0
Fluorene	2.9 U	2.9 U	2.9 U	2.9	10	86-73-7
Hexachlorobenzene	3.0 U	3.0 U	3.0 U	3.0	10	118-74-1
Hexachlorobutadiene	4.1 U	4.1 U	4.1 U	4.1	10	87-68-3
Hexachlorocyclopentadiene	3.8 U	3.8 U	3.8 U	3.8	10	77-47-4
Hexachloroethane	3.0 U	3.0 U	3.0 U	3.0	10	67-72-1
Indeno(1,2,3-cd)pyrene	4.1 U	4.1 U	4.1 U	4.1	10	193-39-5
Isophorone	4.5 U	4.5 U	4.5 U	4.5	10	78-59-1
Naphthalene	^ 3.6 U	^ 3.6 U	3.6 U	3.6	10	91-20-3
Nitrobenzene	3.2 U	3.2 U	3.2 U	3.2	10	98-95-3
N-Nitrosodimethylamine	3.8 U	3.8 U	3.8 U	3.8	10	62-75-9
N-Nitroso-di-n-propylamine	4.5 U	4.5 U	4.5 U	4.5	10	621-64-7
N-nitrosodiphenylamine/Diphenylamine	5.4 U	5.4 U	5.4 U	5.4	10	86-30-6/122-39-4
Pentachlorophenol	^ 8.2 U	^ 8.2 U	8.2 U	8.2	10	87-86-5
Phenanthrene	^ 2.8 U	^ 2.8 U	2.8 U	2.8	10	85-01-8
Phenol	5.6 U	5.6 U	5.6 U	5.6	10	108-95-2
Pyrene	^ 4.1 U	^ 4.1 U	4.1 U	4.1	10	129-00-0
Pyridine	3.5 U	3.5 U	3.5 U	3.5	10	110-86-1
Units	ug/L	ug/L	ug/L			_
Dilution Factor (MEDF)	1	1	1			
Surrogate (% Rec)	:			(Surrogat	e Contr	ol Limits)
2,4,6-Tribromophenol	67%	91%	78%		47-128	}
2-Fluorobiphenyl	* 40%	66%	77%		44-102	
2-Fluorophenol	27%	41%	46%		25-79	
Nitrobenzene-d5	* 39%	64%	77%		43-112	
Phenol-d5	23%	31%	32%		14-54	
Terphenyl-d14	* 123%	* 143%	* 135%		65-122	2

^{*} Value is outside control limits.

[^] The associated laboratory control sample exhibited high bias; since the result is ND, the impact on data quality is minimal.

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified

FDOH Cert # : E83484 SRL Lab Ref # : 14-06033

Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

TCLP Volatile Organics by 8260-GC-MS

Client ID #	: Soil Preburn	
SRL (Lab) ID#	: 1406033-002	
Date Collected	: 06/25/14	
Lab FDOH Certification #	: E83182	
Date Prepared	: 07/09/14	
Date Analyzed	: 07/09/14	MDL PQL CAS Number
1,1-Dichloroethene	0.09 U	0.09 0.100 75-35-4
1,2-Dichloroethane	0.06 U	0.06 0.100 107-06-2
2-Butanone	0.40 U	0.40 0.500 78-93-3
Benzene	0.07 U	0.07 0.100 71-43-2
Carbon Tetrachloride	0.09 U	0.09 0.100 56-23-5
Chlorobenzene	0.07 U	0.07 0.100 108-90-7
Chloroform	0.08 U	0.08 0.100 67-66-3
Tetrachloroethylene	0.08 U	0.08 0.100 127-18-4
Trichloroethene	0.09 U	0.09 0.100 79-01-6
Vinyl Chloride	0.07 U	0.07 0.100 75-01-4
Units	: mg/L	mg/L mg/L
Dilution Factor (MEDF)	: 100	100 100
Surrogate (% Rec)	:	(Surrogate Control Limits)
4-Bromofluorobenzene	88%	41-142
Dibromofluoromethane	88%	53-146
Toluene-D	83%	41-146
Client ID #	: Method Blank	
SRL (Lab) ID#	: MB070914	
Date Collected	: NA	
Lab FDOH Certification #	: E83182	
Date Prepared	: 07/09/14	
Date Analyzed	: 07/09/14	MDL PQL CAS Number
1,1-Dichloroethene	0.0009 U	0.0009 0.001 75-35-4
1,2-Dichloroethane	0.0006 U	0.0006 0.001 107-06-2
2-Butanone	0.0040 U	0.0040 0.005 78-93-3
Benzene	0.0007 U	0.0007 0.001 71-43-2
Carbon Tetrachloride	0.0009 U	0.0009 0.001 56-23-5
Chlorobenzene	0.0007 U	0.0007 0.001 108-90-7
Chloroform	0.0008 U	0.0008 0.001 67-66-3
Tetrachloroethylene	0.0008 U	0.0008 0.001 127-18-4
Trichloroethene	0.0009 U	0.0009 0.001 79-01-6
Vinyl Chloride	0.0007 U	0.0007 0.001 75-01-4
Units	: mg/L	mg/L mg/L
Dilution Factor (MEDF)	: 1	1 1
Surrogate (% Rec)	:	(Surrogate Control Limits)
4-Bromofluorobenzene	108%	41-142
Dibromofluoromethane	121%	53-146
Toluene-D	112%	41-146

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified

FDOH Cert # : E83484 SRL Lab Ref # : 14-06033 Received Date : 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

TCLP Metals by 6000/7000 Series Method

: Soil Preburn	GW De Water	Blank-1		
: 1406033-002	14-06033-003	MB070714		
: 06/26/14	06/26/14	NA		
: E82277	E82277	E82277		
: 07/07/14	07/07/14	07/07/14		
: 07/09/14	07/09/14	07/09/14		
: mg/L	mg/L	mg/L	MDL PQL	CAS Number
0.178 U	0.178 U	0.178 U	0.178 0.250	7440-38-2
0.00425 U	0.00425 U	0.00425 U	0.0043 0.0250	7440-43-9
0.0325 U	0.0325 U	0.0325 U	0.0325 0.250	7440-47-3
0.0550 U	0.0550 U	0.0550 U	0.0550 0.500	7439-92-1
: Blank-2	Blank-3	Blank-4		
: MB070714	MB070714	MB070714		
: NA	NA	NA		
: E82277	E82277	E82277		
: 07/07/14	07/07/14	07/07/14		
: 07/09/14	07/09/14	07/09/14		
: mg/L	mg/L	mg/L	MDL PQL	CAS Number
0.178 U	0.178 U	0.178 U	0.178 0.250	7440-38-2
	0.00405.77	0.00405 11	0.0040.00050	7440 42 0
0.00425 U	0.00425 U	0.00425 U	0.0043 0.0250	7440-43-9
0.00425 U 0.0325 U	0.00425 U 0.0325 U	0.00425 U 0.0325 U	0.0043 0.0250 0.0325 0.250	7440-43-9 7440-47-3
	: 1406033-002 : 06/26/14 : E82277 : 07/07/14 : 07/09/14 : mg/L 0.178 U 0.00425 U 0.0325 U 0.0550 U : Blank-2 : MB070714 : NA : E82277 : 07/07/14 : 07/09/14 : mg/L 0.178 U	: 1406033-002	: 1406033-002	: 1406033-002

QAQC	0/ P	LCS	MS/MSD	A/ DDD	A 4.11
EPA Method 6010C Prep Method: EPA 3010A	% Recovery LCS/MS/MSD	Acceptable Limits	Acceptable Limits	%RPD MS/MSD	Acceptable Limits
Arsenic	103/102/103	80-120	75-125	1	0-20
Cadmium	101/99/99	80-120	75-125	0.9	0-20
Chromium	101/99/100	80-120	75-125	0.7	0-20
Lead	105/103/103	80-120	75-125	0.3	0-20

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified FDOH Cert #: E83484 SRL Lab Ref #: 14-06033 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

			LCS	MS/MSD		
QAQC (SVOCs)		% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: EPA 3510C		LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
1,2,4-Trichlorobenzene		85/51/65	20-95	20-95	24	0-32
1,4-Dichlorobenzene		86/56/66	17-94	17-94	16	0-34
2,4-Dinitrotoluene		105/93/91	63-120	63-120	2	0-23
2-Chlorophenol	*	101/67/74	50-97	50-97	10	0-27
4-Chloro-3-methylphenol		101/61/75	54-108	54-108	22	0-28
4-Nitrophenol		46/40/32	10-129	10-129	20	0-35
Acenaphthene	*	102/64/80	50-95	50-95	22	0-27
N-Nitroso-di-n-propylamine		121/78/85	53-124	53-124	8	0-24
Pentachlorophenol	*	110/101/92	27-100	27-100	10	0-26
Phenol		44/24/25	14-54	14-54	7	0-32
Pyrene	*	135/122/105	61-115	61-115	15	0-28

Metals (total recoverable) by EPA 6000/7000 Series Methods

QAQC		LCS	MS/MSD		
EPA Method 6010C	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: EPA 3005A	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Aluminum	101/100/102	80-120	75-125	1	0-20
Antimony	102/102/103	80-120	75-125	0.8	0-20
Arsenic	104/103/105	80-120	75-125	2	0-20
Barium	102/102/103	80-120	75-125	1	0-20
Boron	102/102/103	80-120	75-125	1	0-20
Cadmium	105/104/105	80-120	75-125	1	0-20
Chromium	102/102/103	80-120	75-125	1	0-20
Copper	103/103/104	80-120	75-125	1	0-20
Lead	105/104/106	80-120	75-125	1	0-20
Selenium	102/97/98	80-120	75-125	1	0-20
Sodium	103/101/103	80-120	75-125	2	0-20
Tin	102/101/102	80-120	75-125	1	0-20
		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: EPA 7470A	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Mercury	97/94/96	80-120	75-125	1	0-20

^{*} The associated laboratory control sample exhibited high bias; since the result is ND, the impact on data quality is minimal.

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified

FDOH Cert # : E83484 SRL Lab Ref # : 14-06033 Received Date : 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P9000

City Of Tampa Tampa, FL

TCLP Volatile Organics by 8260-GC-MS

		LCS	LCS/LCSD		
	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
EPA 5030B_MS	LCS/LCSD	Limits	Limits	LCS/LCSD	Limits
1,1-Dichloroethene	116/137	65-144	65-144	16	0-16
Benzene	108/112	73-138	73-138	3	0-14
Chlorobenzene	90/95	77-127	77-127	6	0-13
Trichloroethene	96/98	83-133	83-133	2	0-20

Metals (Dissolved) by 6000/7000 Series Method

QAQC		LCS	MS/MSD		
EPA Method 6010C	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: EPA 3005A	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Aluminum, Dissolved	99/99/97	80-120	75-125	3	0-20

Southern Research Laboratories, Inc.

NELAP Certified

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100 Received Date: 06/27/14

Bridget Morello

Progressive Engineering & Construction, Inc.

P9000

3912 West Humphrey Street

City Of Tampa

Tampa, Florida 33614 (813) 930-0669 **Tampa, FL**

DATA QUALIFIER CODES

Reporting Exceptions and Qualified Data

When quality control results are outside established control limits reanalysis, including re-extraction (if applicable), is preferred. If re-analysis is not viable or desirable, then results may be qualified. Sample results associated with quality control data that exceed acceptance criteria will be qualified with an appropriate comment.

 \mathbf{D} = Data reported from a dilution and or multiple dilutions.

D5=1/5, D10= 1/10, D20= 1/20, D50= 1/50, D100= 1/100, D200= 1/200, D1= 1/1000

- J = Estimated Value, The reported value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL)
- L = Off-Scale high; exceeds the linear range or highest calibration standard.
- O = Sampled, but analysis lost or not performed
- **Q** = Sample held beyond normal holding time
- $\mathbf{U}=$ indicates the compound was analyzed for, but not detected. The numerical value preceding the "U" is the limit of detection for that compound based upon the dilution. $\mathbf{MEDF}=\mathbf{Matrix}\ \mathbf{Effected}\ \mathbf{Dilution}\ \mathbf{Factor}$.
- V = Analyte was detected in both the sample and associated Laboratory Method Blank; Laboratory Contamination
- \mathbf{Y} = The analysis was from an unpreserved or improperly preserved sample. The data may not be accurate

Unless otherwise noted, ug/Kg and mg/Kg denote dry weight.

(SOILS) Actual Reporting Limit will depend on moisture content of sample and the amount of sample received.

FDOH Cert #: E83484

SRL Lab Ref #: 14-06033

Project Number/Project Name

Quality Assurance/Quality Control Report

Client: Progressive Engineering & Construction, Inc.

SRL# 1406033

Project: P9000

QC07011404.D

City Of Tampa

MSQC070114 18-19.D

Tampa, FL

Parent Sample 07011417.D (DW-1)

VOC Analytes	Method Blank Value	LCS Obs. Value	LCS True Value	LCS % Rec.	Sample Value	Spike Amount Added	MS Value	MSD Value	MS % Rec.	MSD % Rec.	% Rec. Control Lower Limit	% Rec. Control Upper Limit	% RPD	RPD Control Limits
1,1-Dichloroethene (8)	0	28.2	25.0	113	0	25.0	30.2	30.6	121	122	70	130	1.3	30
Trans-1-2-Dichloroethene (11)	0	27.2	25.0	109	0	25.0	27.8	28.9	111	116	70	130	3.9	30
Chloroform (19)	0	24.5	25.0	98	0.6	25.0	26.5	25.8	103	101	70	130	2.6	30
Benzene (25)	0	22.5	25.0	90	0	25.0	23.1	23.4	92	94	70	130	1.5	30
Trichloroethene (28)	0	25.1	25.0	100	3.0	25.0	28.7	28.9	103	104	70	130	0.6	30
1,2-Dichloropropane (31)	0	22.5	25.0	90	0	25.0	22.8	23.3	91	93	70	130	2.3	30
Toluene (35)	0	24.6	25.0	98	0	25.0	25.1	24.0	100	96	70	130	4.4	30
Tetrachloroethene (36)	0	26.7	25.0	107	8.6	25.0	34.1	33.2	102	98	70	130	2.4	30
Chlorobenzene (44)	0	22.0	25.0	88	0	25.0	22.3	20.6	89	83	70	130	7.7	30
Ethylbenzene (45)	0	25.6	25.0	102	0	25.0	26.1	24.3	104	97	70	130	6.9	30
o-Xylene (48)	0	23.3	25.0	93	0	25.0	23.3	21.6	93	86	70	130	7.4	30
Surrogates:														
Dibromofluoromethane	101	9.9	10	98.9	94.7	10	10.5	10.9	105	109	70	130	3.4	30
1.2-Dichloroethane-D4	107	10.6	10	106	108	10	10.9	11.3	109	113	70	130	3.9	30
Toluene-D8	90.5	9.2	10	92.2	91.5	10	9.0	9.8	90.2	98.4	70	130	8.7	30
4-Bromofluorobenzene	97.3	9.7	10	96.6	97.3	10	9.2	9.8	92.4	98.0	70	130	5.9	30

07011402.D

SRL Quality Assurance Officer

Chain of Custody Project Manager: Page of 2251 Lynx Lane, Suite #1 Bridget Marello outhern Project Name: Company: Orlando, Florida 32804 esearch Progracive Eurinearing & Construction In aboratories. Inc. City of Tompo 3912 West Housinery Street City, State, Zip: Project Location: (407) 522-7100 33614 Term Phone: Fax: Toma FL Fax: (407) 522-7043 Toll Free 1 (888) 420-TEST +1 (213) 930-0669 +1 (\$13) 930-9809 Sampled by [Print Name(s)] / Affiliation: Project Number: Preservatives (see codes) PEC C. Nichula **P9000** I REQUESTED DUE DATE: Sampler(s) Signature(s): Analyses Requested dissola 219. ethy low 3/76 Sampling OAP No.: Total Number of Matrix: (see codes) Approval Date: Sample Identification Sampled 207 1406033 Date: Time: Comments: 8541 6/26 GW 141 2 915 910 2 GW 1134 6 12 (FW TOTAL 12 6/25/14 (+W dos GW 6 6/25 1040 aggrove somning. G. XHIZ OBIANK 9/25/1 - 00 Dt Shipment Method: Relinguished by: / Affiliation: Date: Time: Accepted by / Affiliation: Date: Time: 10/17/14 1220 Out: / / Via: 6/26/14 1410 Via: 6.27.16 11 00 Returned: / / har dealter hamper for Ecop for the Will re-blect it Roper (Lainer X Additional Comments: Cooler No.(s) / Temperature(s) (°C): Sampling Kit No.: Equipment ID No.:

SE = Sedimen

I = lee Only

GW = Groundwater

H = Hydrochloric Acid & Ice

A = Air

Matrix Codes:

Preservative Codes:

SO = Soil

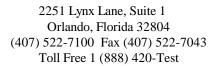
SW = Surface Water

N = Nitric Acid & Ice

W = Water(Blanks)

S = Sulfuric Acid & Ice

0347


HW = Potential Haz Waste

X = Sodium Hydroxide & Ice

O = Other(Specify:

O = Other(Specify)

زنه

Thank you **Ms. Bridget Morello** for the opportunity to be of service to you and your company; we **S**incerely **A**ppreciate **Y**our **B**usiness. SRL certifies these **Laboratory Results** were produced in accordance with NELAC Standards. Hold times and preservation requirements were met for all analytes unless specifically noted in the report. Results relate only to the samples as received.

Client Name: Progressive Eng. & Construction, Inc.	Date(s) Collected: 06/30/14
Contact Name: Bridget Morello	Date Received: 07/01/14
Project Name: Tampa-East Hanna Avenue	Time Received: 11:45
Project Number: P2324	Date Reported: 07/14/14
Phone Number: (813) 930-0669	Date Emailed: 07/14/14
Fax Number: (813) 930-9809	SRL Work Order # 14-07001

SRL WO#	Clients #	Matrix	Analysis Requested
14-07001-001	Purge Barrel	Liquid	TCLP VOCs

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified

FDOH Cert # : E83484 SRL Lab Ref # : 14-07001

Received Date: 07/01/14

Bridget Morello

Client ID#

Trichloroethene

Vinyl Chloride

Dilution Factor (MEDF)

Surrogate (% Rec)

4-Bromofluorobenzene

Dibromofluoromethane

Units

Toluene-D

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

: Purge Barrel

0.0009 U

0.0007 U

: mg/L

108%

121%

112%

: 1

Project Number/Project Name

P2324

Tampa-East Hanna Avenue

Tampa, FL

0.0009 0.001

0.0007 0.001

mg/L

(Surrogate Control Limits)

41-142

53-146

41-146

mg/L

1

TCLP Volatile Organics by 8260-GC-MS

CHEIR ID #	. Turge Darrer	
SRL (Lab) ID#	: 14-07001-001	
Date Collected	: 06/30/14	
Lab FDOH Certification #	: E83182	
Date Prepared	: 07/09/14	
Date Analyzed	: 07/09/14	MDL PQL CAS Number
1,1-Dichloroethene	0.09 U	0.09 0.100 75-35-4
1,2-Dichloroethane	0.06 U	0.06 0.100 107-06-2
2-Butanone	0.40 U	0.40 0.500 78-93-3
Benzene	0.07 U	0.07 0.100 71-43-2
Carbon Tetrachloride	0.09 U	0.09 0.100 56-23-5
Chlorobenzene	0.07 U	0.07 0.100 108-90-7
Chloroform	0.08 U	0.08 0.100 67-66-3
Tetrachloroethylene	0.08 U	0.08 0.100 127-18-4
Trichloroethene	0.09 U	0.09 0.100 79-01-6
Vinyl Chloride	0.07 U	0.07 0.100 75-01-4
Units	: mg/L	mg/L mg/L
Dilution Factor (MEDF)	: 100	100 100
Surrogate (% Rec)	:	(Surrogate Control Limits)
4-Bromofluorobenzene	108%	41-142
Dibromofluoromethane	115%	53-146
Toluene-D	110%	41-146
Client ID #	: Method Blank	
SRL (Lab) ID#	: MB070914	
Date Collected	: NA	
Lab FDOH Certification #	: E83182	
Date Prepared	: 07/09/14	
Date Analyzed	: 07/09/14	MDL PQL CAS Number
1,1-Dichloroethene	0.0009 U	0.0009 0.001 75-35-4
1,2-Dichloroethane	0.0006 U	0.0006 0.001 107-06-2
2-Butanone	0.0040 U	0.0040 0.005 78-93-3
Benzene	0.0007 U	0.0007 0.001 71-43-2
Carbon Tetrachloride	0.0009 U	0.0009 0.001 56-23-5
Chlorobenzene	0.0007 U	0.0007 0.001 108-90-7
Chloroform	0.0008 U	0.0008 0.001 67-66-3
Tetrachloroethylene	0.0008 U	0.0008 0.001 127-18-4

79-01-6

75-01-4

an MBE Environmental Laboratory

2251 Lynx Lane, Suite 1

Orlando, Florida 32804 (407) 522-7100

NELAP Certified

FDOH Cert # : E83484 SRL Lab Ref # : 14-07001

Received Date: 07/01/14

Bridget Morello

Progressive Engineering & Construction, Inc.

3912 West Humphrey Street

Tampa, Florida 33614 (813) 930-0669

Project Number/Project Name

P2324

Tampa-East Hanna Avenue

Tampa, FL

TCLP Volatile Organics by 8260-GC-MS

	% Recovery	LCS Acceptable	LCS/LCSD Acceptable	%RPD	Acceptable
EPA 5030B_MS	LCS/LCSD	Limits	Limits	LCS/LCSD	Limits
1,1-Dichloroethene	90/86	65-144	65-144	4	0-16
Benzene	95/87	73-138	73-138	8	0-14
Chlorobenzene	91/84	77-127	77-127	7	0-13
Trichloroethene	121/110	83-133	83-133	10	0-20

Southern Research Laboratories, Inc.NELAP Certifiedan MBE Environmental LaboratoryFDOH Cert #: E834842251 Lynx Lane, Suite 1SRL Lab Ref #: 14-07001Orlando, Florida 32804(407) 522-7100Received Date: 07/01/14

Bridget Morello
Progressive Engineering & Construction, Inc.
P2324
3912 West Humphrey Street
Tampa, Florida 33614
(813) 930-0669
Project Number/Project Name
P2324
Tampa-East Hanna Avenue
Tampa, FL

DATA QUALIFIER CODES

Reporting Exceptions and Qualified Data

When quality control results are outside established control limits reanalysis, including re-extraction (if applicable), is preferred. If re-analysis is not viable or desirable, then results may be qualified. Sample results associated with quality control data that exceed acceptance criteria will be qualified with an appropriate comment.

 \mathbf{D} = Data reported from a dilution and or multiple dilutions.

D5=1/5, D10=1/10, D20=1/20, D50=1/50, D100=1/100, D200=1/200, D1=1/1000

- J = Estimated Value, The reported value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL)
- L = Off-Scale high; exceeds the linear range or highest calibration standard.
- **O** = Sampled, but analysis lost or not performed
- **Q** = Sample held beyond normal holding time
- $\mathbf{U}=$ indicates the compound was analyzed for, but not detected. The numerical value preceding the "U" is the limit of detection for that compound based upon the dilution. $\mathbf{MEDF}=\mathbf{Matrix}\ \mathbf{Effected}\ \mathbf{Dilution}\ \mathbf{Factor}$.
- V = Analyte was detected in both the sample and associated Laboratory Method Blank; Laboratory Contamination
- \mathbf{Y} = The analysis was from an unpreserved or improperly preserved sample. The data may not be accurate

Unless otherwise noted, ug/Kg and mg/Kg denote dry weight.

(SOILS) Actual Reporting Limit will depend on moisture content of sample and the amount of sample received.

Chain of Custody Project Manager: CHERYL NICHOLS 2251 Lynx Lane, Suite #1 outhern Project Name: Orlando, Florida 32804 oveing & Countraction Inc. esearch TAMPA- EAST HANNA aboratories, Inc. Address: 3912 West Hou City, State, Zip: Project Location: Tampe, 33614 (407) 522-7100 TAMPA, FL Fax: +1 (\$13) 930-9000 Phone: +1 (\$13) 930-0549 Toll Free 1 (888) 420-TEST Fax: (407) 522-7043 Sampled by [Print Name(s)] / Affiliation: Preservatives (see codes) AUTHORY BUTCHER/PEC REQUESTED DUE DATE: Sampler(s) Signature(s); Analyses Requested STO. Sampling QAP No.: Total Number of Containers 0 TCLP-VI Approval Date: Sample Identification Sampled Time: Comments: PURCE BARREL 1407001-001 Shipment Method: Relinquished by: / Affiliation: Date: Time: Accepted by: / Affiliation: Date: Time: Via: Fedex Out: 6 /30/ 14 16:05 6/30/W 12:00 16:15 Returned: / / Via: Via Riving Additional Comments: Sampling Kit No.: Cooler No.(s) / Temperature(s) (°C): Equipment ID No.: SW = Surface Water HW = Potential Haz Waste GW = Groundwater SE = Sediment SO = Śơil W = Water(Blanks) Matrix Codes: A = AirO = Other(Specify: H = Hydrochloric Acid & Ice I = Ice Only N = Nitric Acid & loe Preservative Codes: S = Sulfuric Acid & Ice X = Sodium Hydroxide & Ice O = Other(Specify)

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

ATTACHMENT E

Cost Estimate Letter

July 18, 2014

Mr. Dan Fahey City of Tampa Department of Solid Waste & Environmental Management 4010 W. Spruce Street Tampa, FL 33607

Re: Limited Phase 2 Investigation, Cost Estimates for Assessment & Remediation 2515 East Hanna Avenue Property, Tampa, Florida

Dear Mr. Fahey:

As you know, Progressive Engineering & Construction, Inc. (Progressive) completed a Limited Phase 2 Investigation at the subject site June 16-30, 2014. Based upon field screening of soil samples collected during drilling, we installed one shallow, four intermediate, and two deep wells as shown on Figure 1.

The most impacted groundwater sample was collected from the deep (50 ft) well DW-2 located on the southwest corner of the main manufacturing building. The concentration of tetrachloroethene (PCE) here was 310 ug/L, which is 100 times the Groundwater Cleanup Target Level (GCTL) of 3 ug/L, and slightly above the natural attenuation default concentration (NADC) of 300 ug/L. The groundwater data show that the groundwater contamination near the former rail spur has decreased in the 35 ft zone since 2011, and the deeper 50 ft zone is only impacted with concentrations slightly above Florida's GCTLs. The direction of groundwater flow in the intermediate (35 ft) zone and the deep (50 ft) zone appears to be generally to the west (with a relatively low gradient).

Progressive has evaluated the data collected during the Limited Phase 2 investigation and offers the following range of costs to complete the site assessment and remediate the site to meet the FDEP's closure criteria under Chapter 62-780, F.A.C. The reasonable "Best" and "Worst" case scenarios and assumptions are described below.

Best Case Scenario

Our best case scenario is based on the following assumptions:

- Groundwater contamination near DW-2 represents the highest concentration on the site.
- Contamination in this aquifer zone decreases over a relatively limited distance (either before the property boundary is reached or not too far off-site).
- Contamination is limited to this aquifer zone (i.e., the contamination does not extend vertically to deeper zones of the Upper Floridan aquifer).

- Completing the Site Assessment Report will involve installation of three deep (50 ft) wells and one deeper (80 ft) well, and only very limited soil sampling.
- The site will be remediated through the use of monitored natural attenuation monitoring (NAM) (i.e., no active groundwater treatment), which will include preparation and approval of a NAM Plan that includes six monitoring wells sampled semiannually.

Worst Case Scenario

Our worst case scenario is based on the following assumptions:

- Groundwater contamination near DW-2 extends to depths of up to 100 ft below land surface in the Floridan Aquifer and is significantly higher at depths greater than 50 ft.
- Contamination in this aquifer zone has resulted in a plume that is relatively large and extends far off-site.
- Contamination is of sufficient magnitude (concentration and extent) that active remediation of the source of contamination on-site is necessary.
- Completing the Site Assessment Report will involve installation of up to five 50 ft deep wells, three 80 ft deep wells, and two 100 ft deep wells.
- Remediation of the site will require a combination of source area groundwater treatment and NAM that includes preparation and agency approval of a Remedial Action Plan (RAP).
- Source remediation would involve chemical oxidation or bioremediation via injections into the subsurface to depths of at least 50 ft.
- Off-site remediation would include NAM for an extended period of time after onsite source reduction.
- Because of the concentrations and extent of groundwater contamination, remediation monitoring will likely take at least 10 years and maybe longer to reach closure criteria.

The cost estimates for these two scenarios are as follows:

Scenario	SAR	RAP/ NAMP	Implementation	Monitoring (Years 1 – 5)	Monitoring (Years 5-10)	Total Cost Estimate
Best Case	\$75,000	\$7,500		\$100,000		\$182,500
Worst Case	\$140,000	\$30,000	\$200,000	\$150,000	\$100,000	\$620,000

Note these cost estimates exclude the following:

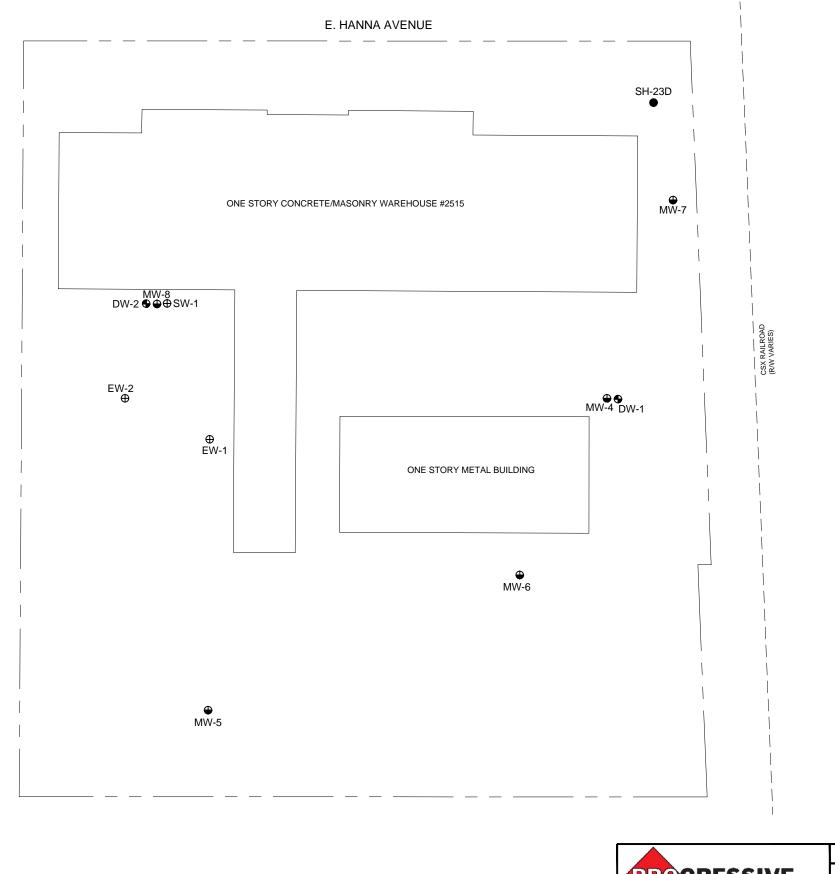
- Obtaining a Brownfield Designated Area or a Brownfield Site Rehabilitation Agreement (BSRA).
- Completion and execution of a deed restriction for a conditional closure.
- Post-closure maintenance costs for the paved areas (engineered control).
- Excavation of soils that are not capped, should that be necessary.

The full report on our investigation will be completed next week and we will forward it to you as soon as it is done. Please let us know if we can be of further assistance.

Sincerely,

Progressive Engineering & Construction, Inc.

Bridget S. Morello, P.E.

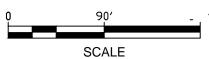

Principal Engineer

G.∥Nell Tyner, Ph.D., P.G.

Senior Scientist

Enclosures

cc: John Fernandez



<u>LEGEND</u>

- ⊕ SHALLOW MONITORING WELL
- → INTERMEDIATE MONITORING WELL
- DEEP MONITORING WELL
- -- PROPERTY LINE

NOTES:

- 1. SITE IMAGE OBTAINED FROM CITY OF TAMPA
- 2. WELL LOCATIONS RELATIVE TO OTHER SITE FEATURES ARE APPROXIMATE.

	NO.	REVISION DETAILS		DATE	MONITOR WE	ELL LOCATIONS
PROGRESSIVE	$\overline{\mathbb{A}}$					
	2				CITY O	DF TAMPA
ENGINEERING & CONSTRUCTION, INC.	$\sqrt{3}$				2515 EAST HANNA AV	ENUE, TAMPA, FL 33610
3912 W. Humphrey Street, Tampa, Florida 33614 Phone: (813) 930-0669 Fax: (813) 930-9809	4				DATE: 07/17/14	DRAWING NUMBER:
Web Site: http://www.progressiveec.com	Δ				DRAWN BY: KWC] 1
FILE PATH: G:\PROJECTS\Tampa - East Hanna Avenue\Drawings\2014\Monitor Well Locations_NEW.dwg SC			SCALE:	1" = 100'	APPROVED BY: GNT	

July 18, 2014

Mr. Dan Fahey City of Tampa Department of Solid Waste & Environmental Management 4010 W. Spruce Street Tampa, FL 33607

Re: Limited Phase 2 Investigation, Cost Estimates for Assessment & Remediation 2515 East Hanna Avenue Property, Tampa, Florida

Dear Mr. Fahey:

As you know, Progressive Engineering & Construction, Inc. (Progressive) completed a Limited Phase 2 Investigation at the subject site June 16-30, 2014. Based upon field screening of soil samples collected during drilling, we installed one shallow, four intermediate, and two deep wells as shown on Figure 1.

The most impacted groundwater sample was collected from the deep (50 ft) well DW-2 located on the southwest corner of the main manufacturing building. The concentration of tetrachloroethene (PCE) here was 310 ug/L, which is 100 times the Groundwater Cleanup Target Level (GCTL) of 3 ug/L, and slightly above the natural attenuation default concentration (NADC) of 300 ug/L. The groundwater data show that the groundwater contamination near the former rail spur has decreased in the 35 ft zone since 2011, and the deeper 50 ft zone is only impacted with concentrations slightly above Florida's GCTLs. The direction of groundwater flow in the intermediate (35 ft) zone and the deep (50 ft) zone appears to be generally to the west (with a relatively low gradient).

Progressive has evaluated the data collected during the Limited Phase 2 investigation and offers the following range of costs to complete the site assessment and remediate the site to meet the FDEP's closure criteria under Chapter 62-780, F.A.C. The reasonable "Best" and "Worst" case scenarios and assumptions are described below.

Best Case Scenario

Our best case scenario is based on the following assumptions:

- Groundwater contamination near DW-2 represents the highest concentration on the site.
- Contamination in this aquifer zone decreases over a relatively limited distance (either before the property boundary is reached or not too far off-site).
- Contamination is limited to this aquifer zone (i.e., the contamination does not extend vertically to deeper zones of the Upper Floridan aquifer).

- Completing the Site Assessment Report will involve installation of three deep (50 ft) wells and one deeper (80 ft) well, and only very limited soil sampling.
- The site will be remediated through the use of monitored natural attenuation monitoring (NAM) (i.e., no active groundwater treatment), which will include preparation and approval of a NAM Plan that includes six monitoring wells sampled semiannually.

Worst Case Scenario

Our worst case scenario is based on the following assumptions:

- Groundwater contamination near DW-2 extends to depths of up to 100 ft below land surface in the Floridan Aquifer and is significantly higher at depths greater than 50 ft.
- Contamination in this aquifer zone has resulted in a plume that is relatively large and extends far off-site.
- Contamination is of sufficient magnitude (concentration and extent) that active remediation of the source of contamination on-site is necessary.
- Completing the Site Assessment Report will involve installation of up to five 50 ft deep wells, three 80 ft deep wells, and two 100 ft deep wells.
- Remediation of the site will require a combination of source area groundwater treatment and NAM that includes preparation and agency approval of a Remedial Action Plan (RAP).
- Source remediation would involve chemical oxidation or bioremediation via injections into the subsurface to depths of at least 50 ft.
- Off-site remediation would include NAM for an extended period of time after onsite source reduction.
- Because of the concentrations and extent of groundwater contamination, remediation monitoring will likely take at least 10 years and maybe longer to reach closure criteria.

The cost estimates for these two scenarios are as follows:

Scenario	SAR	RAP/ NAMP	Implementation	Monitoring (Years 1 – 5)	Monitoring (Years 5-10)	Total Cost Estimate
Best Case	\$75,000	\$7,500		\$100,000		\$182,500
Worst Case	\$140,000	\$30,000	\$200,000	\$150,000	\$100,000	\$620,000

Note these cost estimates exclude the following:

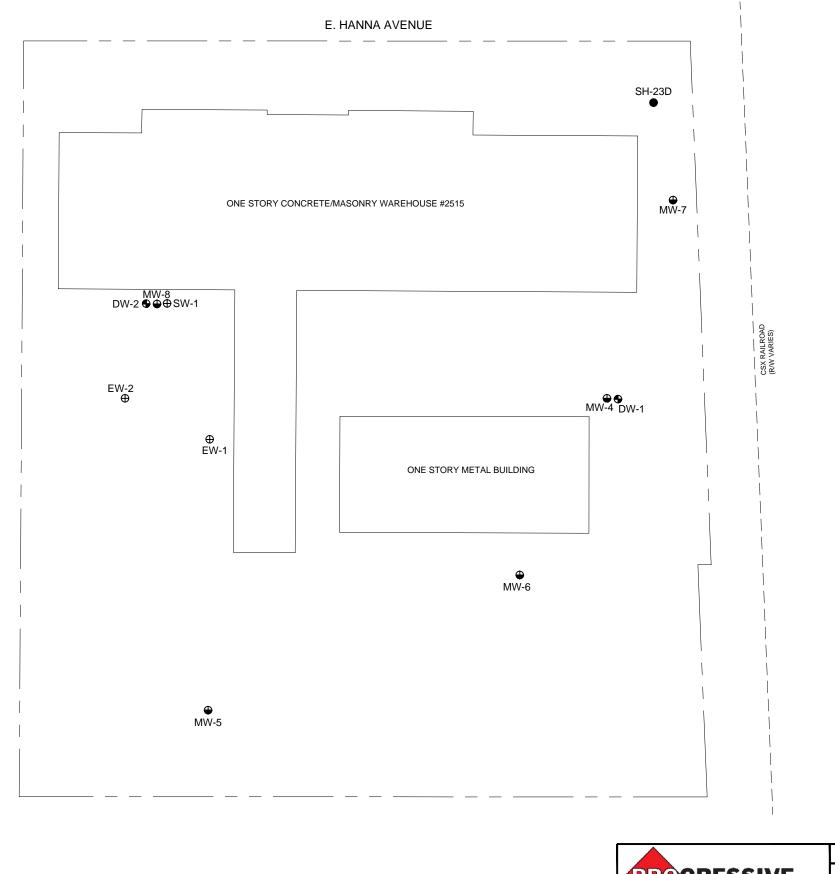
- Obtaining a Brownfield Designated Area or a Brownfield Site Rehabilitation Agreement (BSRA).
- Completion and execution of a deed restriction for a conditional closure.
- Post-closure maintenance costs for the paved areas (engineered control).
- Excavation of soils that are not capped, should that be necessary.

The full report on our investigation will be completed next week and we will forward it to you as soon as it is done. Please let us know if we can be of further assistance.

Sincerely,

Progressive Engineering & Construction, Inc.

Bridget S. Morello, P.E.

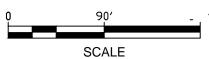

Principal Engineer

G.∥Nell Tyner, Ph.D., P.G.

Senior Scientist

Enclosures

cc: John Fernandez



<u>LEGEND</u>

- ⊕ SHALLOW MONITORING WELL
- → INTERMEDIATE MONITORING WELL
- DEEP MONITORING WELL
- -- PROPERTY LINE

NOTES:

- 1. SITE IMAGE OBTAINED FROM CITY OF TAMPA
- 2. WELL LOCATIONS RELATIVE TO OTHER SITE FEATURES ARE APPROXIMATE.

	NO.	REVISION DETAILS		DATE	MONITOR WE	ELL LOCATIONS
PROGRESSIVE	$\overline{\mathbb{A}}$					
	2				CITY O	DF TAMPA
ENGINEERING & CONSTRUCTION, INC.	$\sqrt{3}$				2515 EAST HANNA AV	ENUE, TAMPA, FL 33610
3912 W. Humphrey Street, Tampa, Florida 33614 Phone: (813) 930-0669 Fax: (813) 930-9809	4				DATE: 07/17/14	DRAWING NUMBER:
Web Site: http://www.progressiveec.com	Δ				DRAWN BY: KWC] 1
FILE PATH: G:\PROJECTS\Tampa - East Hanna Avenue\Drawings\2014\Monitor Well Locations_NEW.dwg SC			SCALE:	1" = 100'	APPROVED BY: GNT	

EXHIBIT B

Compensation

The scope of work provided in Exhibit A shall be completed on a time and materials basis, with a not-toexceed budget of \$675,000. This amount differs from the preliminary cost estimate for assessment and remediation (Progressive letter to City dated July 18, 2014), based on the changes to the scope of work per our meeting on August 5, 2015, regarding coordination of remedial efforts with renovation/ redevelopment activities being performed by others under separate contract with the City. Extra work includes coordination with the site renovation/development, subcontracting geotechnical work, and preparation of VCTC applications. Rates and Invoicing/Payment terms are outlined below:

2015 FEE SCHEDULE

Professional Category	<u> Hourly Rate (\$/hr)</u>
Principal Engineer/Scientist	175
Senior Engineer/Scientist	140
Project Engineer/Scientist	125
Staff Engineer/Scientist	105
Construction Manager	95
Senior Technician	80
Technician	70
Drafter	65
Clerical	50

Expert/Legal Services

Expert/legal services will be billed at the normal billing rate (no mark-up) for each applicable labor rate category utilized.

Subcontractors, New and Rental Equipment, and Materials

Use of equipment owned by Progressive Engineering & Construction, Inc. will be billed at fixed unit rates, see attached Equipment and Expendable Items Rate Sheet. Subcontractors, equipment (new and/or rental not owned by Progressive Engineering & Construction, Inc.), and materials (chemicals, field supplies, etc.) will be billed at actual cost with 0% markup. All billed quantities and rates will be subject to mutually agreed to adjustment.

Expenses (e.g., travel related, freight and shipping, telephone, reproductions) will be billed at actual cost with 0% markup, unless otherwise specified.

Company vehicle and personal vehicle mileage will be billed at the prevailing government rate (e.g., 2015 rate is \$0.56/mile).

Invoicing and Payment

Invoices will be issued on a monthly basis, and shall include all required attachments.

Field Equipment		Price per	
Water Monitoring Equipment	Day	Week	Month
Multi-parameter Water Meter (Horiba U-22, YSI Pro Plus)	150	500	1500
Bailer (Stainless or Teflon)	8	24	72
Conductivity, pH, Temperature Meter	35	100	300
Dissolved Oxygen Meter	50	150	450
Redox Meter	65	200	600
Turbidity Meter	35	100	300
Oil/Water Interface Probe	65	195	585
Electric W.L. Indicator	25	75	225
Water Pumping Equipment	45	125	405
Peristaltic Pump (M-Flex) 12 volt external battery power supply	10	135 30	405 90
12 volt external battery power supply 12 volt battery charger	5	15	45
1" Centrifugal or Sump	20	60	180
4" Submersible Pump (10 - 20 gpm)	80	250	750
1" Pneumatic Diaphragm Pump	50	150	450
Wilden Bladder Pump	95	285	855
2" Pneumatic Submersible w/Controller	95	285	855
2" Redi-Flo Pump w/Converter, 100'	150	450	1350
2" Redi-Flo Pump w/Converter, 200'	150	450	1350
Whale Pump 12 volt power	20	60	180
Logging Equipment		00	.00
Data Logger/Processor Multi Channel	150	450	1350
Transducer for Multi Channel Unit	90	270	810
In-Situ miniTroll Data Logger	100	300	900
Barometer (recorder)	25	75	225
Garmin GPS	40	120	360
Temperature (IR) Gauge Data Logger	10	30	90
Laptop	55	165	495
I-Pac Hand Held PC	30	90	270
Level C Level A or B		ce Quoted Upon Requ ce Quoted Upon Requ	
Air Monitoring Equipment			
LEL/O ₂ Meter*	O.F.	OFF	
CO ₂ Meter*	85	255	765
	60	180	540
	60 175	180 550	540 1650
FID/PID*/**	60 175 200	180 550 600	540 1650 1800
FID/PID*/** Automatic Air Sampling Pump	60 175 200 50	180 550 600 150	540 1650 1800 450
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra)	60 175 200 50 20	180 550 600 150 60	540 1650 1800 450 180
CO ₂ , Methane, Oxygen Meter* FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer)	60 175 200 50 20 75	180 550 600 150 60 225	540 1650 1800 450 180 675
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O)	60 175 200 50 20 75 20	180 550 600 150 60 225 60	540 1650 1800 450 180 675 180
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM)	60 175 200 50 20 75	180 550 600 150 60 225	540 1650 1800 450 180 675
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge	60 175 200 50 20 75 20	180 550 600 150 60 225 60	540 1650 1800 450 180 675 180
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas	60 175 200 50 20 75 20	180 550 600 150 60 225 60	540 1650 1800 450 180 675 180
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment	60 175 200 50 20 75 20 20	180 550 600 150 60 225 60	540 1650 1800 450 180 675 180 180
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment Soil Sampler	60 175 200 50 20 75 20 20 20	180 550 600 150 60 225 60 60	540 1650 1800 450 180 675 180 180
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment Soil Sampler Power Auger	60 175 200 50 20 75 20 20 20	180 550 600 150 60 225 60 60 105 195	540 1650 1800 450 180 675 180 180
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) † plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket)	60 175 200 50 20 75 20 20 20 35 65	180 550 600 150 60 225 60 60 105 195 75	540 1650 1800 450 180 675 180 180 315 585 225
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket) Core Drill	60 175 200 50 20 75 20 20 20 35 65 25 75	180 550 600 150 60 225 60 60 105 195 75 225	540 1650 1800 450 180 675 180 180 315 585 225 675
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket) Core Drill Metal Detector	60 175 200 50 20 75 20 20 20 35 65	180 550 600 150 60 225 60 60 105 195 75	540 1650 1800 450 180 675 180 180 315 585 225
Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) Toplus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas ** Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket) Core Drill Metal Detector ** Operations Equipment	60 175 200 50 20 75 20 20 20 35 65 25 75	180 550 600 150 60 225 60 60 105 195 75 225	540 1650 1800 450 180 675 180 180 315 585 225 675
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) Toplus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas ** Soil Sampling Equipment ** Soil Sampler **Power Auger **Hand Auger with up to 8 ft of extensions (includes handle and bucket) **Core Drill **Metal Detector **Operations Equipment **Air Compressor (up to 2 hp) with 100' of 3/8" air hose	60 175 200 50 20 75 20 20 20 35 65 25 75 25	180 550 600 150 60 225 60 60 105 195 75 225 75	540 1650 1800 450 180 675 180 180 315 585 225 675 225
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge * Additional charge will apply if shipping is required due to hazardous gas * Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket) Core Drill Metal Detector * Operations Equipment Air Compressor (up to 2 hp) with 100' of 3/8" air hose Generator (up to 5.0 KW)	60 175 200 50 20 75 20 20 20 35 65 25 75 25	180 550 600 150 60 225 60 60 105 195 75 225 75	540 1650 1800 450 180 675 180 180 315 585 225 675 225
Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) Toplus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas ** Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket) Core Drill Metal Detector ** Operations Equipment Air Compressor (up to 2 hp) with 100' of 3/8" air hose Generator (up to 5.0 KW) Surveying Equipment (transit, rod and tape)	60 175 200 50 20 75 20 20 20 35 65 25 75 25	180 550 600 150 60 225 60 60 105 195 75 225 75	540 1650 1800 450 180 675 180 180 315 585 225 675 225
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket) Core Drill Metal Detector Operations Equipment Air Compressor (up to 2 hp) with 100' of 3/8" air hose Generator (up to 5.0 KW) Surveying Equipment (transit, rod and tape) Pressure Washer	60 175 200 50 20 75 20 20 20 35 65 25 75 25	180 550 600 150 60 225 60 60 105 195 75 225 75 135 180 165	540 1650 1800 450 180 675 180 180 315 585 225 675 225 405 540 495
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket) Core Drill Metal Detector Operations Equipment Air Compressor (up to 2 hp) with 100' of 3/8" air hose Generator (up to 5.0 KW) Surveying Equipment (transit, rod and tape)	60 175 200 50 20 75 20 20 20 20 35 65 25 75 25 45 60 55 50	180 550 600 150 60 225 60 60 105 195 75 225 75 135 180 165 150	540 1650 1800 450 180 675 180 180 315 585 225 675 225 405 540 495 450
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) † plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket) Core Drill Metal Detector Operations Equipment Air Compressor (up to 2 hp) with 100' of 3/8" air hose Generator (up to 5.0 KW) Surveying Equipment (transit, rod and tape) Pressure Washer 2 - Way Radio (pair) Truck with tools	60 175 200 50 20 75 20 20 20 20 35 65 25 75 25 45 60 55 50 35	180 550 600 150 60 225 60 60 105 195 75 225 75 135 180 165 150 100	540 1650 1800 450 180 675 180 180 315 585 225 675 225 405 540 495 450 300
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket) Core Drill Metal Detector Operations Equipment Air Compressor (up to 2 hp) with 100' of 3/8" air hose Generator (up to 5.0 KW) Surveying Equipment (transit, rod and tape) Pressure Washer 2 - Way Radio (pair)	60 175 200 50 20 75 20 20 20 20 35 65 25 75 25 45 60 55 50 35 50	180 550 600 150 60 225 60 60 105 195 75 225 75 135 180 165 150 100 250	540 1650 1800 450 180 675 180 180 315 585 225 675 225 405 540 495 450 300 1000
FID/PID*/** Automatic Air Sampling Pump Manual Air Sampling (Indicator Tubes Extra) Air Flow Meter (pitot, anemometer) Magnehelic Pressure Gauges (0-1, 0-10, 0-100 in of H2O) Roto-Meter (3-25 SCFM) * plus \$35/use calibration charge ** Additional charge will apply if shipping is required due to hazardous gas Soil Sampling Equipment Soil Sampler Power Auger Hand Auger with up to 8 ft of extensions (includes handle and bucket) Core Drill Metal Detector Operations Equipment Air Compressor (up to 2 hp) with 100' of 3/8" air hose Generator (up to 5.0 KW) Surveying Equipment (transit, rod and tape) Pressure Washer 2 - Way Radio (pair) Truck with tools Tools (In-house Construction)	60 175 200 50 20 75 20 20 20 20 35 65 25 75 25 45 60 55 50 35 50 20	180 550 600 150 60 225 60 60 105 195 75 225 75 135 180 165 150 100 250 50	540 1650 1800 450 180 675 180 180 315 585 225 675 225 405 540 495 450 300 1000 150

Expendable Items

Field Supplies	<u>Unit</u>	Cost/Unit
1.5" X 3' Disposable PE Bailer	ea	\$13.00
Water Filters	ea	\$21.00
Nylon Rope (1/8")	ft	\$0.10
1/4" Vinyl Tubing	ft	\$0.70
3/8" Vinyl Tubing	ft	\$1.00
1/2" Vinyl Tubing	ft	\$1.25
1/4" Polyethylene Tubing	ft	\$0.40
3/8" Polyethylene Tubing	ft	\$0.60
1/4" Tygon Tubing	ft	\$3.30
3/8" Tygon Tubing	ft	\$4.70
1/2" Tygon Tubing	ft	\$5.65
1/4" Silicon Tubing (peroxide cured)	ft	\$4.70
3/8" Silicon Tubing (peroxide cured)	ft	\$5.60
1/2" Silicon Tubing (peroxide cured)	ft	\$8.85
1/4" Viton Tubing	ft	\$14.00
3/8" Viton Tubing	ft	\$18.60
1/2" Viton Tubing	ft	\$17.40
1/4" Braided Tubing	ft	\$1.60
3/8" Braided Tubing	ft	\$2.75
1/2" Braided Tubing	ft	\$3.50
1/4" Teflon Tubing	ft	\$6.00
3/8" Teflon Tubing	ft	\$9.75
1/2" Teflon Tubing	ft	\$13.95
1/2" General Purpose Hose - 200 psi W.P.	ft	\$1.65
1" General Purpose Hose - 200 psi W.P.	ft	\$2.90
Lab Grade Detergent	pint	\$12.00
Latex Surgical Gloves	pair	\$0.40
Nitrile Sampling Gloves	pair	\$0.50
Leather Gloves	pair	\$7.00
Disposal Booties	pair	\$12.00
Tyvek	ea	\$12.00
Respirator Cartridges	pair	\$20.00
Visqueen (Plastic Sheeting), 2-mil - 10' x 50'	roll	\$30.00
Visqueen (Plastic Sheeting), 4-mil - 10' x 50'	roll	\$57.00
Visqueen (Plastic Sheeting), 6-mil - 20' x 100'	roll	\$120.00
Lock	ea	\$20.00
2" Locking Well Cap	ea	\$18.00
4" Locking Well Cap	ea	\$32.00
Daily Decontamination Kit (includes buckets, detergent, brushes, aluminum foil, etc.)	wk	\$25.00
Mileage (prevailing government rate)	mile	\$0.50
Reproduction/Office Supplies		
Reproduction (8.5" x 11")	\$.10/page	\$0.10
Plots (24" x 36")	\$5.50/copy	\$5.50
Document Materials/Bindery	\$5.00 /copy	\$5.00
Up to and including 2" binder (3-ring)	\$10.00 /copy	\$10.00
2" to 4" binder (3-ring)	\$15.00 /copy	\$15.00

Notes:

Week = 7 day cycle Month = 30 day cycle

Exhibit C

CITY OF TAMPA INSURANCE REQUIREMENTS

During the life of the award/contract the Awardee/Contractor shall provide, pay for, and maintain insurance with companies authorized to do business in Florida, with an A.M. Best rating of B+ (or better) Class VII (or higher), or otherwise be acceptable to the City if not rated by A.M. Best. All insurance shall be from responsible companies duly authorized to do business in the State of Florida.

All commercial general liability insurance policies (and Excess or Umbrella Liability Insurance policies, if applicable) shall provide that the City is an additional insured as to the operations of the Awardee/Contractor under the award/contract including the additional insured endorsement, the subrogation wavier endorsement, and the Severability of Interest Provision. In lieu of the additional named insured requirement, if the Awardee/Contractor's company has a declared existing policy which precludes it from including additional insureds, the City may permit the Contractor to purchase an Owners and Contractors Protective Liability policy. Such policy shall be written in the name of the City at the same limit as is required for General Liability coverage. The policy shall be evidenced on an insurance binder which must be effective from the date of issue until such time as a policy is in existence and shall be submitted to the City in the manner described below as applicable to certificates of insurance.

The insurance coverages and limits required must be evidenced by a properly executed Acord 25 Certificate of Insurance on form or its equivalent. Each Certificate must be personally manually signed by the Authorized Representative of the insurance company shown in the Certificate with proof that he/she is an authorized representative thereof. Thirty days' written notice must be given to the City of any cancellation, intent not to renew, or reduction in the policy coverages, except in the application of the aggregate liability limits provisions. Should any aggregate limit of liability coverage be reduced, it shall be immediately increased back to the limit required by the contract. The insurance coverages required herein are to be primary to any insurance carried by the City or any self-insurance program thereof.

The following coverages are required:

- A. Commercial General Liability Insurance shall be provided on the most current Insurance Services Office (ISO) form or its equivalent. This coverage must be provided to cover liability arising from premises and operations, independent contractors, products and completed operations, personal and advertising injury, contractual liability, and XCU exposures (if applicable). Completed operations liability coverage shall be maintained for a minimum of one-year following completion of work. The amount of Commercial General Liability insurance shall not be less than the amount specified.
- (a) \$1,000,000 per occurrence and a \$2,000,000 general aggregate for projects valued at \$2,000,000 or less. General aggregate limit for projects over that price shall equal or exceed the price of the project. An Excess or Umbrella Liability insurance policy can be provided to meet the required limit. Risk Management may be contacted for additional information regarding projects of this nature.
- B. <u>Automobile Liability Insurance</u> shall be maintained in accordance with the laws of the State of Florida, as to the ownership, maintenance, and use of all owned, non-owned, leased, or hired vehicles. The amount of Automobile Liability Insurance shall not be less than the amount specified.

- (a) \$500,000 combined single limit each occurrence bodily injury & property damage- for projects valued at \$100,000 and under
- (b) \$1,000,000 combined single limit each occurrence bodily injury & property damage for projects valued over \$100,000
- C. Worker's Compensation and Employer's Liability
 Insurance shall be provided for all employees engaged in the
 work under the contract, in accordance with the Florida
 Statutory Requirements. The amount of the Employer's
 Liability Insurance shall not be less than:
- (a) \$500,000 bodily injury by accident and each accident, bodily injury by disease policy limit, and bodily injury by disease each employee for projects valued at \$100,00 and under
- (b) \$1,000,000 bodily injury by accident and each accident, bodily injury by disease policy limit, and bodily injury by disease each –for projects valued over \$100,000
- D. Excess Liability Insurance or Umbrella Liability Insurance may compensate for a deficiency in general liability, automobile, or worker's compensation insurance coverage limits. If the Excess or Umbrella policy is being provided as proof of coverage, it must name the City of Tampa as an additional insured (IF APPLICABLE).

- E. <u>Builder's Risk Insurance</u>, specialized policy designed to cover the property loss exposures that are associated with construction projects. The amount of coverage should not be less than the amount of the project. (**IF APPLICABLE**).
- F. <u>Installation Floater</u>- a builder's risk type policy that covers specific type of property during its instillation, is coverage required for highly valued equipment or materials such as compressors, generators, or other machinery that are not covered by the builder's risk policy (**IF APPLICABLE**).
- G. <u>Longshoreman's & Harbor Worker's Compensation</u>
 <u>Act/Jones Act</u> coverage shall be maintained for work being conducted upon navigable water of the United States. The limit required shall be he same limit as the worker's compensation/employer's liability insurance limit (IF APPLICABLE).
- H. <u>Professional Liability</u> shall be maintained against claims of negligence, errors, mistakes, or omissions in the performance of the services to be performed and furnished by the Awaradee/Contractor or any of its subcontractors when it acts as a DESIGN PROFESSIONAL. The amount of coverage shall be no less than amount specified (**IF APPLICABLE**).
- (a) \$1,000,000 per incident and general aggregate. Note all claims made policies must provide the date of retroactive coverage.

The City may waive any or all of the above referenced insurance requirements based on the specific nature of goods or services to be provided under the award/contract.

<u>ADDITIONAL INSURED</u> - The City must be included as an additional insured by on the general and (Excess or Umbrella liability policies) if applicable. Alternatively, the Contractor may purchase a separate owners protective liability policy in the name of the City in the specified amount as indicated in the insurance requirements.

<u>CLAIMS MADE POLICIES</u> - If any liability insurance is issued on a claims made form, Contractor agrees to maintain uninterrupted coverage for a minimum of one year following completion and acceptance of the work either through purchase of an extended reporting provision, or through purchase of successive renewals with a retroactive

date not later than the beginning of performance of work for the City. The retroactive date must be provided for all claims made policies.

<u>CANCELLATION/NON-RENEWAL</u> - Thirty (30) days written notice must be given to the City of any cancellation, intent to non-renew or material reduction in coverages (except aggregate liability limits). However, ten (10) days notice may be given for non-payment of premium. Notice shall be sent to the City of Tampa Department of Public Works, 306 E. Jackson Street, Tampa, FL 33602.

NUMBER OF POLICES - General and other liability insurance may be arranged under single policies for the full amounts required or by a combination of underlying policies with the balance provided by an excess or umbrella liability insurance policy.

<u>WAIVER OF SUBROGATION</u> - Contractor waives all rights against City, its agents, officers, directors and employees for recovery of damages to the extent such damage is covered under the automobile or excess liability policies.

<u>SUBCONTRACTORS</u> - It is the Contractor's responsibility to require all subcontractors to maintain adequate insurance coverage.

<u>PRIMARY POLICIES</u> - The Contractor's insurance is primary to the City's insurance or any self insurance program thereof.

RATING - All insurers shall be authorized to do business in Florida, and shall have an A.M. Best rating of B+ (or better), Class VII (or higher), or otherwise be acceptable to the City if not rated by A.M. Best.

<u>DEDUCTIBLES</u> - The Contractor is responsible for all deductibles. In the event of loss which would have been covered but for the presence of a deductible, the City may withhold from payment to Contractor an amount equal to the deductible to cover such loss should full recovery not be obtained under the insurance policy.

<u>INSURANCE ADJUSTMENTS</u> - These insurance requirements may be increased, reduced, or waived at the City's sole option with an appropriate adjustment to the Contract price.

Document updated on 12/22/2009 by RLD (Risk Management)

Tampa

EXHIBIT D

Page 3 of 4DMI – Solicited/Utilized City of Tampa –DMI Schedule of Sub-(Contractors/Consultants/Suppliers) to be Utilized (FORM MBD-20)

Contract No.: 15-D-00028	Contract Name:	Hanna Avenue Site Re	mediation	
Contractor Name: Progress	sive Engineering & Construction	n, Inc. Address:	3912 W. Humphrey St., Tampa, FL 33614	
Federal ID: 59-3604711	Phone: 813-930-0669	Fax: 813-930-9809	Email: bmorello@progressiveec.com	
[] See attached documents [] No Subcontracting (of a	s. ny kind) will be performed on	this contract.		
NIGP Code General Categories: Buildir	igs = 909, General = 912, Heavy = 913,	Trades = 914, Architects = 906	6, Engineers & Surveyors = 925, Supplier = 912-77	

This DMI Schedule Must Be Submitted with the Bid or Proposal (Do Not Modify This Form)

Enter "S" for I	rms Certified as Small Local Business Enterprises, "W" for firms Certified as Women/W	Inority Business Enterprise

S = SLBE W=WMBE	Company Name Address	Type of Ownership (F=Female M=Male) BF BM = African Am. HF HM = Hispanic Am.	Trade, Services, or Materials	Amount of Quote.	Percent of
Federal ID	Phone & Fax	AF AM = Asian Am. NF NM = Native Am. CF CM = Caucasian	NIGP Code Listed above	Intent if available.	Scope/Contract %
	Cascade Drilling, L.P. 6424 Pinecastle Blvd., Orlando, FL 32809	CM	914		9
27-0642404	352-237-1995 F-352-237-1961				
	Southern Research Laboratories, Inc. 2251 Lynx Lane, Suite 1, Orlando, FL 32804	BF	914		30
59-3066868	407-522-7100 F-407-522-7043				
	Vironex Technical Services, LLC 3 Owls Nest Road, Wilmington, DE 19807	НМ	914		14
27-0642404	813-626-1717 F-813-626-1718				
	Clark Environmental 755 Prairie Industrial Pkwy, Mulberry, FL 33860	CF	912		4
59-3061371	863-425-4884 F-863-425-2854	0.	012		'
W	Bayside Engineering 1104 E. Twiggs Street, Suite 100, Tampa, FL 33602	CF	925		2
59-3275933	813-314-0314 F-813-314-0345	0.	020		_
	Nelson & McKay, CPAs LLC 4515 Mariner Street, Suite 211, Tampa, FL 33609	CM	912		1
27-1498374	813-286-7946 F-813-286-3777	Oivi	512		ı
	PSI Engineering Consulting Testing 5801 Benjamin Center Drive, #112, Tampa, FL 33634	CM	925		
37-0962090	813-886-1075 F-813-249-4916	Civi	920		

	5801 Benjamin Center Drive, #112, Tampa, FL 33634	СМ	925			
37-0962090	813-886-1075 F-813-249-4916	OW	323			
otal Subcon	tract/Supplier Utilization \$_360,000					_
otal SLBE U	tilization \$					
otal WMBE U	Jtilization \$12,000					
Percent SLBE	Utilization of Total Bid/Proposal Amt. 0 % Percer	nt WMBE Utilization	of Total Bio	d/Proposa	I Amt2_9	%
t is hereby ce	rtified that the following information is a true and accurate	account of utilization	n for sub-coi	ntracting o	oportunities on	ı this
ontract. <u>This</u>	form must be completed and submitted with the bid of	or proposal. Modifyi	ng or failing	to sign DN	<u>11 forms may re</u>	<u>esult</u>
n Non-Compli	ance and/or deemed non-responsive.			· ·	-	
Signed: $\overline{\mathcal{L}}$	Name/Title: Bri	dget Morello/Preside	nt	Date: <u>8</u>	/18/2015	
1BD 20 roy 05	01/13 / Doto: Detailed Instruction	one for com□letin	a t⊟ie form	are on t	a no t and	۵.

Page 1 of 2 –DMI Payment City of Tampa – DMI Sub-(Contractors/Consultants/Suppliers) Payments (FORM MBD-30)

[]Partial []Fin	al	·		
Contract No.:	WO#,(if any):Address Phone:	Contract Name:		
Contractor Name:	Address	i. <u> </u>		
Federal ID:	Phone:	Fax:E	mail:	
GC Pay Period:	Payment Request/Invoice	e Number: (City Department:	
-Type of Owner NM ■ Native Am., Type Trade/Work	uested for pay period: \$ ership - (F=Female M=Male), BF BM = A CF CM = Caucasian S = SLBE			
Activity []Sub []Supplier Federal ID		Sub Contract Or PO Amount	Amount Pending Previously Reported	Sub Pay Period Ending Date
			\$	\$
			\$	\$
			\$	\$
			\$	\$
			\$	\$
			\$	\$
(M	odifying This Form or Failure to Com	plete and Sian Mav Resu	It in Non-Complia	nce)
Certification: I he	ereby certify that the above informat tants on this contract.			
Signed:	Name/Ti	itle: ons for com⊟eting t⊡is f	Dato Dato	e: e⊑t □age

Page 2 of 2 – DMI Payment

Instructions for completing The DMI Sub-(Contractors/Consultants/ Suppliers) Payment Form (Form MBD-30)

This form must be submitted with all invoicing or payment requests where there has been subcontracting rendered for the pay period. If applicable, after payment has been made to the subcontractor, "Waiver and Release of Lien upon Progress Payment", "Affidavit of Contractor in Connection with Final Payment", or an affidavit of payment must be submitted with the amount paid for the pay period. The following will detail what data is required for this form. The instructions that follow correspond to the headings on the form required to be completed. (Modifying or omitted information from this form my result in non-compliance).

- **Contract No.** This is the number assigned by the City of Tampa for the bid or proposal.
- W.O.# If the report covers a work order number (W.O.#) for the contract, please indicate it in that space.
- Contract Name. This is the name of the contract assigned by the City of Tampa for the bid or proposal.
- **Contractor Name.** The name of your business.
- Address. The physical address of your business.
- **Federal ID.** A number assigned to a business for tax reporting purposes.
- **Phone.** Telephone number to contact business.
- **Fax.** Fax number for business.
- **Email.** Provide email address for electronic correspondence.
- Pay Period. Provide start and finish dates for pay period. (e.g. 05/01/13 05/31/13)
- **Payment Request/Invoice Number.** Provide sequence number for payment requests. (ex. Payment one, write 1 in space, payment three, write 3 in space provided.)
- **City Department**. The City of Tampa department to which the contract pertains.
- Total Amount Requested for pay period. Provide all dollars you are expecting to receive for the pay period.
- **Total Contract Amount (including change orders).** Provide expected total contract amount. This includes any change orders that may increase or decrease the original contract amount.
- Signed/Name/Title/Date. This is your certification that the information provided on the form is accurate.
- See attached documents. Check if you have provided any additional documentation relating to the payment data. Located at the bottom middle of the form.
- Partial Payment. Check if the payment period is a partial payment, not a final payment. Located at the top right of the form.
- Final Payment. Check of this period is the final payment period. Located at the top right of the form.

The following instructions are for information of any and all subcontractors used for the pay period.

- (Type) of Ownership. Indicate the Ethnicity and Gender of the owner of the subcontracting business or SLBE.
- Trade/Work Activity. Indicate the trade, service, or material provided by the subcontractor.
- SubContractor/SubConsultant/Supplier. Please indicate status of firm on this contract.
- **Federal ID.** A number assigned to a business for tax reporting purposes. This information is critical in proper identification of the subcontractor.
- Company Name, Address, Phone & Fax. Provide company information for verification of payments.
- Total Subcontract Amount. Provide total amount of subcontract for subcontractor including change orders.
- Amount Paid To Date. Indicate all dollars paid to date for the subcontractor.
- Amount Pending, Previously Reported. Indicate any amount previously reported that payments are pending.
- Amount To Be Paid for this Period. Provide dollar amount of dollars requested for the pay period.
- Sub Pay Period Ending Date. Provide date for which subcontractor invoiced performed work.

Forms must be signed and dated or will be considered incomplete. The company authorized representative must sign and certify the information is true and accurate. Failure to sign this document or return the document unsigned can be cause for determining a company is in non-compliance of Ordinance 2008-89.

If any additional information is required or you have any questions, you may call the Minority Business Development Office at (813) 274-5522.