

Limited Phase II Site Investigation Former General Cable Facility

2515 E. Hanna Avenue, Tampa, FL

Prepared for

City of Tampa

July 25, 2014

Prepared by

Progressive Engineering & Construction, Inc. 3912 W. Humphrey Street Tampa, FL 33614 Tel. 813-930-0669 Fax. 813-930-9809 www.progressiveec.com

Bridget S. Morello, P.E. Florida P.E. #56914

TABLE OF CONTENTS

Page

1.0	INTRO 1.1 1.2	DDUCTION Background/Areas of Concern Conceptual Site Model	1
2.0	MONI ⁷ 2.1 2.2 2.3 2.4 2.5 2.6	TORING WELL INSTALLATION South Side of Site/Southwest of Former Tin Plating Building South of Former Tin Plating Building South of Former Tin Plating Building East Side of Main Building Southwest Side of Main Building Southwest Side of Main Building Southwest Side of Main Building	3 4 4 4
3.0	GEOL 3.1	OGY/HYDROGEOLOGY Water Table Elevations	
4.0	GROU 4.1 4.2	INDWATER SAMPLING AND ANALYSIS Determination of Groundwater Flow Directions Summary of Groundwater Quality	7
5.0	EVALU 5.1	JATION OF RESULTS OF INVESTIGATION	
6.0	REFE	RENCES1	1

TABLES

- 1. Well Construction Details & Groundwater Elevation Summary
- 2. Summary of Groundwater Quality Data

FIGURES

- 1. Site Location Map
- 2. Lagos & Associates, Inc. Map
- 3. Monitoring Well Location Map
- 4. Shallow Groundwater Contour Map
- 5. Intermediate Groundwater Contour Map
- 6. Deep Groundwater Contour Map
- 7. Groundwater VOC Concentrations

ATTACHMENTS

- A. Well Construction Diagrams/Boring Logs
- B. Photo Documentation of Well Installations
- C. Groundwater Sampling Logs
- D. Laboratory Analytical Data Reports
- E. Cost Estimate Letter

1.0 INTRODUCTION

Progressive Engineering & Construction, Inc. (Progressive), prepared this report to provide the City of Tampa Solid Waste Department Office of Environmental Coordination (City) a summary of the limited Phase II site investigation completed for the former General Cable facility located at 2515 East Hanna Avenue, Tampa, FL (Figure 1). Based upon historical documents, Progressive developed a scope of work to evaluate the general magnitude of current environmental impacts to subsurface soil and groundwater and the potential cost to remediate those impacts should the City decide to purchase the property. The results of the limited investigation are summarized below.

1.1 Background/Areas of Concern

Based upon the nature of historical operations at the site, numerous areas of potential concern for environmental media were previously identified and investigated by others (Figure 2). These included:

- tin plating building (later used for vehicle maintenance);
- air compressor area on southwest side of the main building;
- former methyl ethyl ketone (MEK) still on southeast side of main building;
- east end of the main building in the cable labeling process area where MEK/ink drawing solution tanks formerly were located outside the building;
- former paint shed area (south of former above-ground storage tank (AST) location);
- stormwater discharge pipe and ditch where the parts washer sink previously discharged;
- area south of the main building where drum(s) of ethylene glycol and sodium hydroxide waste were reportedly found leaking in the early 1990s;
- area on the south side of the site where used oil, spent MEK, and MEK product was stored; and
- former lead press pit and boiler room inside the building.

Previous investigations performed at the site confirmed that there was contamination present in soil and groundwater in some of the areas of the site.

- Groundwater impacted with lead, MEK, and cis/trans-1,2-dichloroethene (DCE) was reported from a temporary well installed in 1994 by Lagos & Associates, Inc. southwest of the main manufacturing building, and tetrachloroethene (PCE) was reported above groundwater cleanup target levels in a sample obtained from a monitoring well installed to 30 feet below land surface (ft bls) by PES Associates, Inc. in 2011 in the area near the rail spur on the eastern side of the property.
- There are also a number of areas where soils may have been impacted from past operations. A brief site visit performed by Progressive on May 28, 2014, revealed that there is oil staining throughout the floors of buildings where tin

plating, vehicle maintenance, and other possible manufacturing operations may have taken place. Although some soil impacts were confirmed in previous limited investigations completed by Lagos & Associates, Inc. (1994, 1996) and Pilko & Associates, Inc. (1996), high levels of contamination in soils tested from several of the areas listed above were not found in those studies. In addition, although there may be some soil impacts, remediation of such impacts is not considered to be a likely major cost when compared to the potential cost of active remediation of groundwater contamination, if needed.

Progressive's investigation was focused on evaluating the potential for significant groundwater contamination to be present at the facility because potential remedial costs would be driven by dealing with groundwater impacts if any were found. Potential soil impacts were not considered as significant as groundwater since the site has been inactive for several years, is covered with large buildings and paved areas, and, if acquired by the City, the City intends to maintain this level of impervious site coverage.

Previous data showed that at least the uppermost Upper Floridan (intermediate aquifer) contained PCE, and several other solvents reported to have been used at the site including 1,1,1,-trichloroethane (TCA). The solvent 1,1,1-TCA often contained 1,4-dioxane, which was added as a stabilizer. Because 1,4-dioxane is essentially miscible in water, if it were present at significant concentrations, it would be very expensive to remediate.

1.2 <u>Conceptual Site Model</u>

Previous studies at this property and nearby sites identified that a shallow perched aquifer is found sporadically throughout this area of Tampa and was previously found to be present under at least a portion of the property south of the main manufacturing building. The direction of groundwater flow in the shallow perched zone has generally been to the south and southeast; however, one report indicated that it was northeastward.

Beneath the perched aquifer lies what has been referred to as an "intermediate" aquifer, which is considered to be the top of the Upper Floridan Aquifer, which is present in weathered limestone and the underlying dense clayey/silty limestone of the Tampa Member of the Arcadia Formation. This intermediate aquifer was encountered during previous investigations at approximately 25 to 30 feet bls at the site. Based upon investigations done by the Florida Department of Environmental Protection (FDEP) at the nearby Former National Linen site, the direction of groundwater flow is thought to be westward (either to the northwest or southwest) in the intermediate aquifer in this area (IT Corp., 1997; PSI, 2008; and CRA, 2013).

Progressive's investigation confirmed that the direction of groundwater flow at the site is northwestward in the shallow perched zone and westward in the intermediate and deep zones.

2.0 MONITORING WELL INSTALLATION

Progressive originally proposed to install four intermediate (35 ft bls) wells and one deep (50 ft bls) well to investigate several potential source areas and to evaluate groundwater flow in the intermediate aquifer. Contingency wells would be added in the event that field screening using a photo-ionization detector (PID) indicated that subsurface impacts were significantly greater than anticipated. Parameters to be analyzed in the laboratory included those of concern considering the operations and materials that were historically handled at the site.

Progressive oversaw the installation by Cascade Drilling LP of four intermediate-depth monitoring wells to approximately 35 ft bls, two deeper wells to 50 ft bls, and one shallow well to 10 ft bls. Well locations were based upon areas of concern identified in previous reports. Due to the timing of the field investigation and availability of drilling rigs and personnel, a rotosonic rig was used instead of the originally proposed hollow stem auger and mud rotary drilling methods. This method yields continuous soil cores and is actually a preferable method of well installation because it does not require drilling mud, it gives continuous lithologic cores, and generates less investigative derived waste (IDW) to be disposed of after the wells are installed. The deep wells were installed by driving a temporary casing to the appropriate depth to isolate the upper zone, and then drilling through this temporary casing, which was then removed as the deep well was completed.

All of the monitoring wells were completed with 8-inch round steel bolt down manhole covers installed within 2-ft by 2-ft concrete pads that were sloped to drain rainfall away from the cover. Wells were developed in accordance with acceptable methods using a submersible pump. All drill cuttings and development water were drummed in 55-gallon drums for off-site disposal.

The monitoring well locations are shown on the attached Figure 3. The boring logs and well construction diagrams are included in Attachment A. Photographs from the field work are included in Attachment B. Descriptions of the field efforts in each area of concern are detailed below.

2.1 <u>South Side of Site/Southwest of Former Tin Plating Building</u>

On June 16, 2014, an intermediate well (MW-5) was installed to 35 ft bls near the area where waste oil, waste MEK and raw MEK was formerly stored on the south side of the site. No perched aquifer was observed at this location, and PID readings did not indicate excessive contamination in soil samples collected. Based upon the low PID readings, which decreased in the deeper portions of the borehole, it was not considered necessary to install a deeper contingency well at this location.

2.2 <u>South of Former Tin Plating Building</u>

One intermediate well (MW-6) was installed on June 17, 2014, south of the former tin plating building where an aboveground used oil tank and a tank with unknown contents

were formerly present. No perched aquifer was observed at this location, and PID readings did not indicate excessive contamination in soil. Based upon the field screening, it was not considered necessary to install a deeper contingency well at this location.

2.3 East Side of Main Building

On June 17, 2014, an intermediate well (MW-7) was installed to a depth of 35 ft bls approximately 30 ft east of the main manufacturing building near the location where several piping lines formerly exited the wall of the building and where drawing solution (ink) tanks were formerly known to have been located. No perched aquifer was observed at this location, and PID readings did not indicate excessive contamination in soil. It was not considered necessary to install a deeper contingency well at this location.

2.4 Rail Spur

The intermediate well (MW-4) that was installed in 2011 by PES Associates, Inc. was found in the paved area south of the rail spur (Figure 3). Therefore, no additional intermediate well was installed at this location, and only the planned deep well (DW-1) was installed near the rail spur where MW-4 had previously shown chlorinated compounds in the 30 ft zone. The deep well was installed to 50 ft bls on June 17, 2014.

2.5 Southwest Side of Main Building

On June 18-19, 2014, the installation of monitoring wells was initiated in this area of concern. It was anticipated that an intermediate well and a deep well would be installed at this location based upon the former presence of an air compressor and previous groundwater analyses that had reported elevated MEK, lead, and chlorinated solvents here. Initial drilling indicated that a perched aquifer zone was present and the PID screening indicated that shallow soils were impacted. Therefore, Progressive also installed a shallow well screened between 2 and 10 ft bls to assess the contamination present in the perched aquifer.

After the first boring was terminated at 10 ft and a shallow well completed, an intermediate well was initiated next to it. Dense grey clay was first encountered at a relatively shallow depth of 10 ft bls in this boring. Below that sandy clays containing some limestone fragments were present to 21 ft bls where another dense gray clay was encountered that extended down to 27 ft bls where brown clay with limestone and blue clay layers were found extending down to 35 ft bls. Between 31 and 35 ft bls, the PID readings indicated that contaminant levels were increasing with depth. Therefore, the boring was terminated at 35 ft to avoid drilling through an impervious layer (i.e., clay) into a more transmissive layer (i.e., limestone) without protective surface casing, and an intermediate depth well (MW-8) was completed. This well was screened from 19 to 34 ft bls, with a slightly longer well screen that was anticipated, in order to ensure that sufficient groundwater would be present to be able to purge the well and collect representative samples. A temporary surface casing was then advanced adjacent to

MW-8 to a depth of 40 ft and a deeper 50 ft contingency well (DW-2) was installed in the upper portion of the weathered limestone of the Floridian Aquifer.

2.6 <u>Summary of Well Installations</u>

Based upon the field screening results, which did not suggest that excessive concentrations of contaminants were present at the depths to which most of the intermediate wells were installed, only one additional deep contingency well was installed. This deep well (DW-2) was installed near the southwest side of the main manufacturing building, where both intermediate and shallow wells were also installed, based upon elevated PID readings increasing near the bottom of the intermediate well depth. In addition, because the shallow zone appeared to indicate shallow contamination in this location, the two existing shallow wells (ES-1 and ES-2) south of this well cluster were also sampled, even though they had not previously shown impacts, to confirm whether a groundwater plume was present in the perched zone.

After the monitoring wells were installed, their locations, ground surface elevations, and top of casing elevations were surveyed by City of Tampa survey crew. Table 1 provides a summary of well construction and survey data for the new and existing wells at this site.

3.0 GEOLOGY/HYDROGEOLOGY

A thick section of clay strata with thin interbedded sands was observed in the western and southern areas of the site where MW-5, MW-8 and DW-2 were installed. Well MW-8, installed at the southwestern corner of the main manufacturing building, contained mostly clay layers from 10 ft bls down to the total depth of the boring of 35 ft. At MW-5 in the southern part of the site, clay strata also dominate from 9 ft bls to 30 ft bls. This well is screened from 25 to 35 ft bls across sandy clays and the top of the weathered limestone (encountered at around 30 ft bls).

A thinner section of clays was observed on the eastern half of the site where wells MW-6, MW-7 and DW-1 were installed. On the eastern portion of the site the clays overlying the weathered limestone of the Upper Floridan had a total thickness of only about 6 ft. Thus, it appears that the thicker section of clay layers seen in MW-8 and DW-2 are pinching out toward the east across the site, and the top of the limestone is found at shallower depths toward the east. This is consistent with the limestone appearing at increasing depths to the west and the general westward direction of groundwater flow in the Upper Floridan aquifer here.

3.1 <u>Water Table Elevations</u>

The water table in the perched zone is approximately 3 to 4 ft bls. In the intermediate and deep zones the water table is encountered at approximately 25 to 30 ft bls. The water level measured in intermediate-depth well MW-8 appears to reflect connectivity between the sandy clays that extend down to 15 ft bls and the overlying perched aquifer at this location as the water table measured in this well was just over 4 ft bls, which is similar to the water levels in the shallow perched aquifer wells (SW-1, EW-1 and EW-2), and is almost 20 ft above that of the other 35 ft deep wells on the site. The water levels in the other intermediate wells and the deep wells are similar and represent the water level in the top of the Upper Floridan aquifer.

4.0 GROUNDWATER SAMPLING AND ANALYSIS

Groundwater samples were collected for laboratory analysis in accordance with FDEP Standard Operating Procedures (SOPs) from all of the new wells, the existing intermediate well (MW-4), and the two existing shallow wells on June 25 and 26, 2014. Groundwater sampling logs are included in Attachment C. Parameters selected for groundwater analyses were based upon documented previous contamination and/or operations at the facility that may have resulted in environmental impacts. Samples were submitted to our contract laboratory, Southern Research Laboratory, Inc. (SRL) in Orlando, Florida, for analyses of volatile organic compounds (VOCs) by EPA Method 8260, SVOCs by EPA Method 8270, fluoride, boron, RCRA metals (lead, cadmium, chromium, barium, selenium, mercury, arsenic, and antimony), copper, aluminum, and tin. In addition, because ethylene glycol and sodium hydroxide were reported from a leaking drum located south of the main building in the early 1990s, sodium and ethylene glycol was also analyzed in intermediate depth groundwater samples. The deep wells were only analyzed for VOCs by EPA Method 8260 as the presence of solvents at depth was the main concern being evaluated for purpose of estimating potential cleanup costs. Laboratory analytical reports are included in Attachment D.

The existing intermediate well (MW-4) near the rail spur is only 1-inch diameter, and therefore could not be sampled using a submersible pump. Because the depth to water was more than 20 ft (peristaltic pump cannot pull from depths exceeding 20 ft), a bailer had to be used to purge and sample this well. Purging was difficult because there was only about 3 feet of water in the bottom of the well screen, but field personnel were able to obtain one VOA vial for VOC analysis. If the City needs to sample this aquifer zone at this location in future, Progressive recommends that this well be properly abandoned (it is also not properly finished with a protective pad at the surface) and re-installed as a 2-inch diameter monitoring well of sufficient depth to enable purging and sampling with a submersible pump.

In addition, after initial well development some of the groundwater still had a milky appearance. Because of concern that the groundwater might not clear up when the wells were purged before sampling leading to high turbidity in the samples collected for metals analyses, Progressive personnel took the additional time to field filter and collect extra aliquots of filtered groundwater samples from each intermediate well. This ensured that samples could be analyzed for dissolved metals if the total metal analyses resulted in elevated values.

4.1 <u>Determination of Groundwater Flow Directions</u>

Water level data were collected from all of the available wells on June 25, 2014. Figures 4 through 6 show the directions of groundwater flow estimated for each zone of the aquifer. The general direction of shallow perched groundwater appears to be to the northwest toward the western end of the main manufacturing building. The general direction of groundwater flow in the intermediate and deeper zones is westward with relatively low gradients. Because of the limited number of wells in each aquifer zone, it

is difficult to tell whether the flow is directly westward or whether it is more toward the southwest or northwest.

4.2 <u>Summary of Groundwater Quality</u>

Preliminary analytical data were received from the laboratory on July 8, 2014, with final laboratory analytical reports being received July 8 through 17, 2014. Figure 7 illustrates the VOCs of concern detected in each well. The results were as follows:

- The perched zone reported only minor VOC impacts near the main manufacturing building. The previously installed EW-1 and EW-2 did not show any VOCs to be detected.
- In the intermediate zone (30 to 35 ft bls) low level VOC impacts were seen in several locations, including MW-8 (near the southwest corner of the building) and MW-4 (near the rail spur), where contamination had been reported at higher levels previously.
- VOC impacts were also confirmed in the underlying 50 ft zone, with the greatest impacts being reported from DW-2 along the southwestern side of the main manufacturing building. This well contained 310 ug/L of tetrachloroethene (PCE), which is just above the natural attenuation default concentration (NADC) of 300 ug/L. The deep well near the rail spur reported only low levels of several VOCs with PCE at 8.6 ug/L.

Based upon the presence of much higher concentrations of contaminants in the 50 ft zone when compared to the 35 ft and 10 ft zone wells near the manufacturing building, it appears that the source of the contamination in the deeper 50 ft zone at DW-2 reflects migration from a release point at another location on the site, potentially from underneath the building or from the loading docks located east of this part of the building.

Only two wells reported 1,4-dioxane to be detected: DW-2 and MW-5. The concentration in MW-5 near the south side of the site was 7.0 ug/L and the concentration in DW-2 was 1.6 ug/L. The groundwater cleanup target level (GCTL) for this compound is 3.2 ug/L. Based upon the different contaminants detected in MW-5 compared to the other wells, the lack of detection of 1,4-dioxane at higher levels in any of the other wells, and the uncertainty in groundwater flow direction, it is possible that the 1,4-dioxane detection in MW-5 may not reflect an on-site release of this compound. We would recommend that the direction of groundwater flow in the 35 ft zone be more closely determined before any conclusion is drawn as to whether the 1,4-dioxane is attributable to the site or to an upgradient off-site source.

Low levels of several trihalomethane compounds (bromodichloromethane, dibromochloromethane, and chloroform) were detected in several groundwater samples. Trihalomethanes are formed as by-product of chlorination of potable water, thus they likely resulted from the potable water used in the sonic coring process. They are not considered to be site-related VOC constituents of concern.

Concentrations of metals in the groundwater samples collected are generally not of concern. The only total metal analyses that were above any GCTL were boron in MW-6 (near the former tin-plating building where caustic soda and fluoroboric acid were previously used) and aluminum in several wells. In order to confirm that the aluminum was not a site-related constituent of concern, filtered samples were analyzed. The dissolved aluminum analyses were similar in concentration and were only slightly above the secondary GCTL of 200 ug/L for this metal. Therefore, we conclude that the elevated aluminum was a function of turbidity in the samples, aluminum naturally occurs at this site at relatively low concentrations close to the GCTL, and it is not a site-related constituent of concern in groundwater.

Boron is very soluble, so filtering of samples and analysis for dissolved boron was not done. It appears that the elevated boron in MW-6 is related to the former use of fluoroboric acid in the adjacent tin-plating building. Its occurrence above the GCTL appears to be limited to this area as concentrations of boron are not elevated in any of the other groundwater samples analyzed.

5.0 EVALUATION OF RESULTS OF INVESTIGATION

Progressive discussed our initial findings/conclusions regarding site conditions with the City on July 9, 2014, and generalized cost estimates for "best and worst case" scenarios to complete the assessment and cleanup of the site were provided via e-mail on July 18, 2014 (Attachment E). This report summarizes the work performed and Progressive's evaluation of the significance of the environmental impacts found, recommendations for next steps, and a brief description of the most likely remedial approaches for groundwater.

5.1 <u>Recommended Next Steps</u>

Review of historical documents indicated that some soils at the site may be impacted from historical operations on the property, but groundwater issues were considered to be a more likely controlling factor for any remedial options because the main contaminants of concern identified at the site were chlorinated volatile organic compounds, which tend to sink in an aquifer, and the upper portion of the Floridan Aquifer is present in the shallow subsurface beneath the site.

In general, with the exception of the area around DW-2, most of the site does not appear to have significantly elevated concentrations of groundwater contamination. The depth of contamination at DW-2 and the lack of greater contamination at shallower depths above it, however, suggests that the likely release point does not coincide exactly with the well location. Thus, there could be one or more areas of the site that have higher groundwater contaminant concentrations.

The recommended next steps in investigation would be to determine whether the concentration of contaminants in the 50 ft aquifer zone are decreasing or increasing downgradient from DW-2, to further refine the direction of groundwater flow in this zone of the aquifer, and to determine whether contamination extends below the 50 ft aquifer zone to any significant extent. Once this information is known, any further investigations would be based upon the need to identify potential source areas and delineate the full extent of contamination.

If the contamination has not migrated any deeper than the 50 ft aquifer zone, and if DW-2 reflects the highest concentrations observed on-site, natural attenuation monitoring (NAM) is an option that could be pursued. This is a relatively low-cost option, but it will take a longer period of time to achieve closure criteria than if the source is actively treated. Alternatively, the City could consider more active remediation of the source area(s) followed by NAM.

6.0 **REFERENCES**

- Conestoga Rovers & Associates, Inc. (CRA), 2013. Site Assessment Workplan, Former National Linen Service, 1919 East Paris Street, Tampa, Hillsborough County, prepared for the Florida Department of Environmental Protection (dated December 2013).
- IT Corporation, 1997. Final Site Investigation Report, Seminole Heights Solvent Site, Tampa, FL, prepared for the Florida Department of Environmental Protection Site Investigation Section (dated May 1997).
- Lagos & Associates, Inc., 1994. Environmental Assessment, General Cable Company Facility (dated June 1994).
- PES Associates, 2011. Limited Subsurface Investigation, Electrical Machine Enterprises, 2515 East Hanna Avenue, Tampa, FL 33610 (dated June 16, 2011).
- Pilko & Associates, Inc., 1994. Workplan for the Site at 2515 East Hanna Avenue, Tampa, Florida, prepared for General Cable Corporation (dated November 1994).
- Pilko & Associates, Inc., 1996. Field Investigation of Tampa, Florida, Site prepared for General Cable Corporation (dated February 13, 1996).
- PSI, 2008. Groundwater Well Sampling and Analysis, Seminole Heights Solvent Study, 1919 East Paris Street, Tampa, Hillsborough County, Florida prepared for the Florida Department of Environmental Protection (dated June 24, 2008).

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

TABLES

Table 1. Well Construction Details and Groundwater Elevation Summary, Former General Cable Facility, Tampa, FL

Well ID:	SV	V-1	E۷	V-1	E٧	/-2	MV	V-4	MV	V-5	MV	V-6	MV	V-7	MV	V-8	DV	V-1	DV	V-2
Diameter (in):		2	2	2	2			1		2		2		2		2	2	2	2	2
Depth (ft):	1	0	12	2.9	9.	7	30 (2	28.6)	3	5	3	5	3	5	3	5	5	0	5	60
Screen Interval (ft):	2-	10	unk -	12.9	unk	9.7	20-	-30	25	-35	26	-35	25	-35	19	-34	45	-50	45	-50
TOC Elevation (ft amsl):	54	.94	54	.33	54.	80	52	.55	56	.81	51	.98	51	.88	54	.8	52	2.4	55	.04
Land Elevation (ft amsl):	54	1.7	54	.33	54.	80	52	.4	56	.81	51	.98	51	.88	54	.7	52	2.4	54	1.9
Date Measured	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE	DTW	WTE
6/25/2014	3.75	51.19	2.71	51.62	3.10	51.70			29.20	27.61	24.33	27.65	23.73	28.15	4.43	50.37	24.62	27.78		
6/26/2014							25.06	27.49											27.47	27.57

Notes:

in - inches.

ft - feet.

ft amsl - feet above mean sea level.

TOC - top of casing.

DTW - depth to water, measured from top of casing.

WTE - water table elevation.

unk - upper depth of well screen is unknown.

	Sample ID	SW-1	EW-1	EW-2	MW-4	MW-5	MW-6	MW-7	MW-8	DW-1	DW-2
	Sample Date	6/25/2014	6/25/2014	6/25/2014	6/26/2014	6/25/2014	6/25/2014	6/25/2014	6/25/2014	6/25/2014	6/25/2014
Volatile Organic Compounds (uq/L) ¹	GCTL (ug/L)										
Tricholoroethene	3	0.2 J	<1.0	<1.0	<1.0	0.2 J	2.2	<1.0	2.7	3	70
Tetracholoroethene	3	0.7 J	<1.0	<1.0	20	<1.0	0.5 J	1	2.8	8.6	310 D
Cis-1,2-Dichloroethene	70	<1.0	<1.0	<1.0	<1.0	<1.0	3	<1.0	<1.0	<1.0	25
Trans-1,2-Dichloroethene	100	<1.0	<1.0	<1.0	<1.0	<1.0	0.4 J	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	7	<1.0	<1.0	<1.0	<1.0	2.8	<1.0	<1.0	<1.0	<1.0	0.6 J
1,1-Dichloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.8 J	<1.0
1,4-Dioxane	3.2					7.0	<1.0	<1.0	<0.5	<0.5	1.6
Benzene	1	<1.0	<1.0	<1.0	<1.0	0.5 J	<1.0	<1.0	<1.0	<1.0	<1.0
2-Butanone (MEK)	4200	<10	<10	<10	<10	25	<10	<10	<10	<10	<10
Semi-Volatile Organic Compounds ¹											
In-Organic Compounds ¹											
Aluminum (dissolved)	200	246				275	202	322	283		
Aluminum (total)	200 ²	1550				1860	275	339	343		
Barium	2000	30.3				21.9	26.6	12.7	7.88		
Boron	1400	111				86.6	1760	109	88.5		
Cadmium	5	0.263 J				0.778 J	<0.170	<0.170	0.521 J		
Lead	15	3.65 J				2.78 J	<2.20	<2.20	<2.20		
Sodium	160000	6560				13800	12900	5250	13400		
Tin	4200	5.92 J				<5.40	6.23 J	<5.40	<5.40		
Mercury	2	0.109 J				0.0367 J	<0.0230	<0.0230	<0.0230		
Fluoride	2000					0.28	0.24	0.35	0.5 J		

Notes:

ug/L - micrograms per liter.

GCTL - Florida Department of Environmental Protection Groundwater Cleanup Target Level.

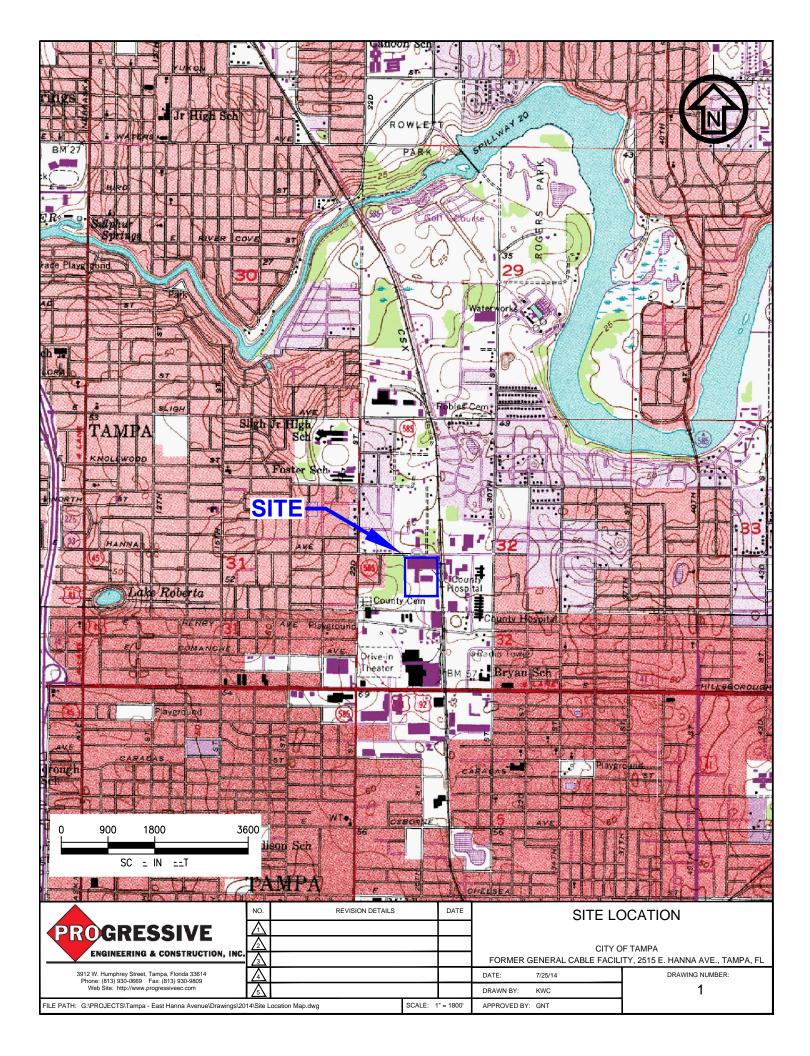
< - Compound was not detected, numerical value is the limit of detection for that compound.

J - Estimated value between the Method Detection Limit and the Practical Quantitation Limit flagged by the laboratory using an "I".

D - Data reported from a dilution or multiple dilutions.

-- - sample was not analyzed for this compound.

BOLD - Bold value indicates a result above the GCTL.

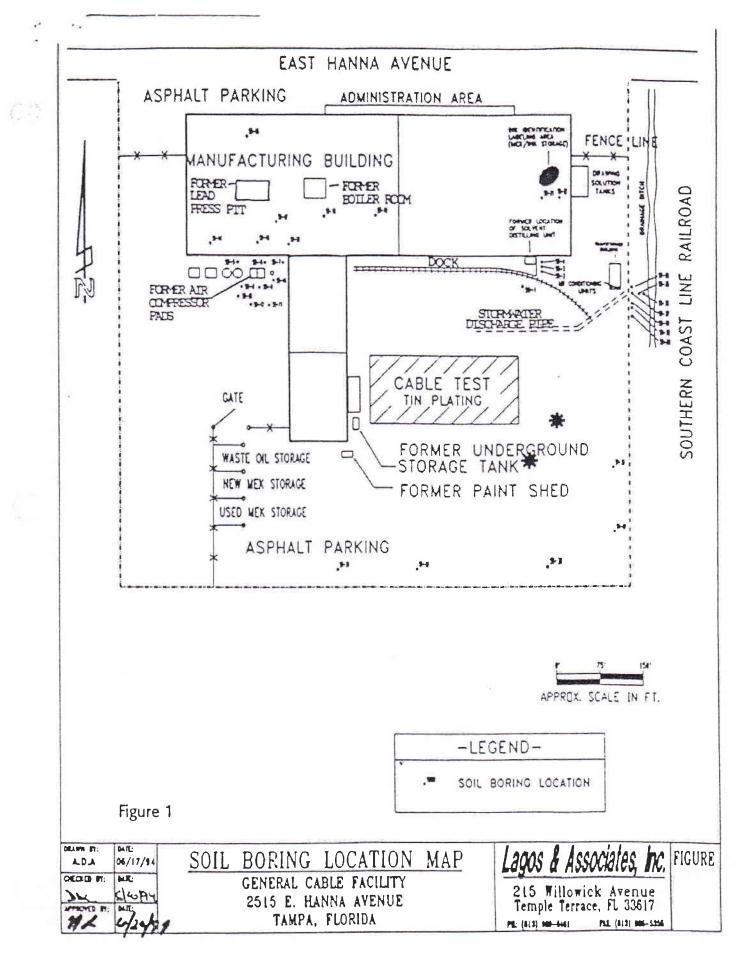
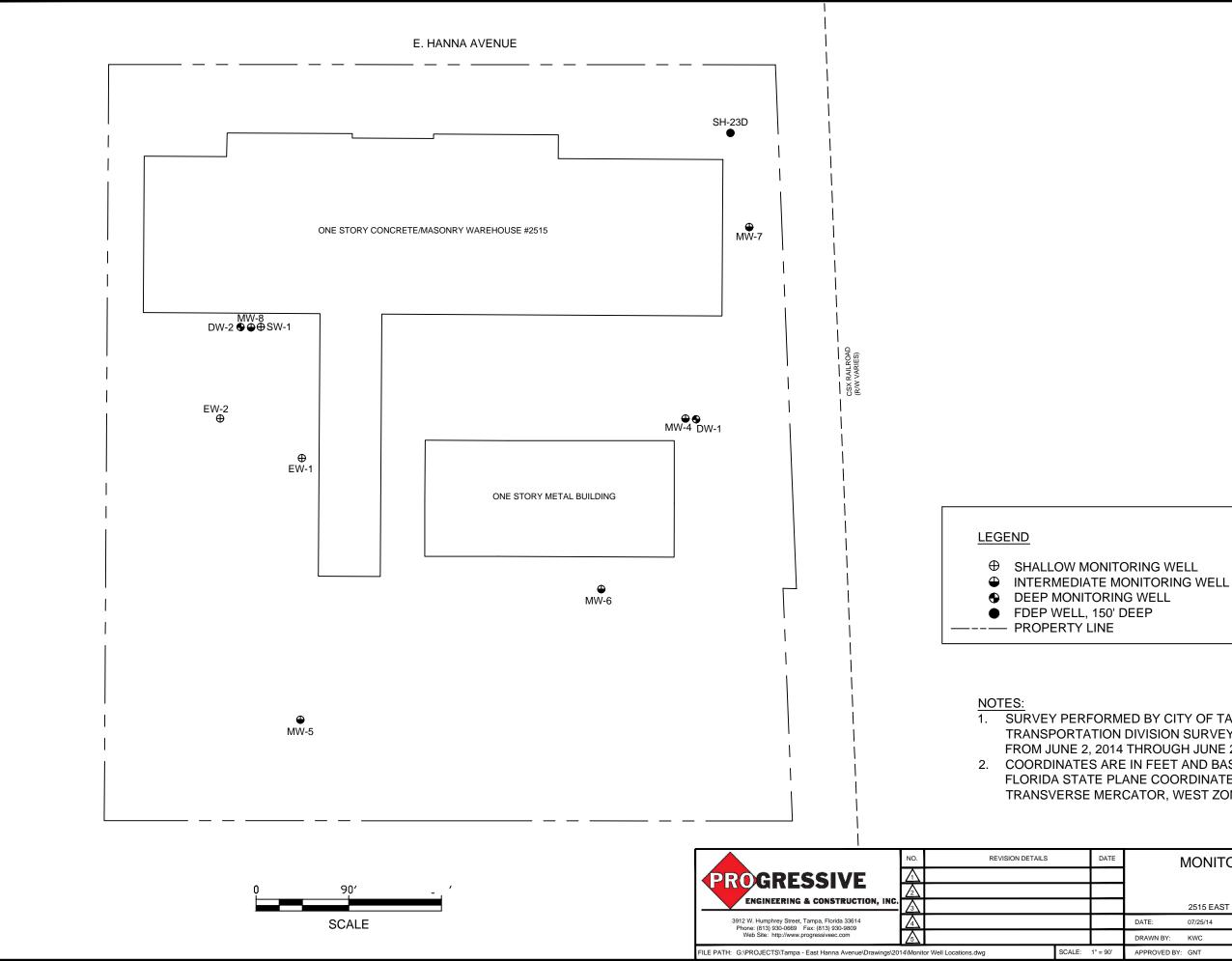

¹ Only compounds of concern detected in at least one sample are presented herein, unabridged data are presented in the lab reports. All results were non-detect for semi-volatile organic compounds, TCLP, and ethylene glycol, see lab reports.

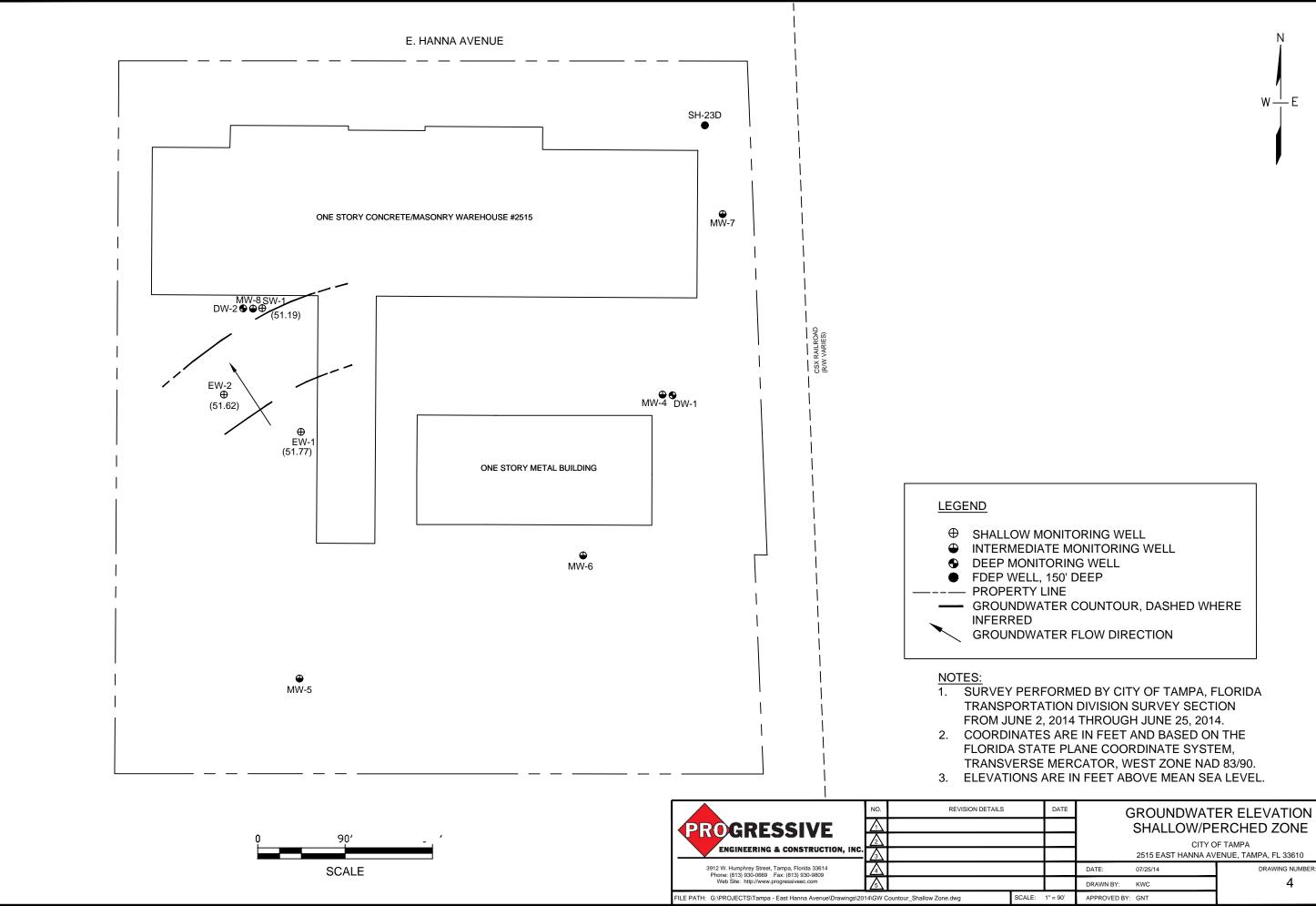
Low levels of trihalomethanes were detected in several samples, but are not considered to be site-related compounds of concern.

² Aluminum GCTL is based upon organoleptic concentrations.

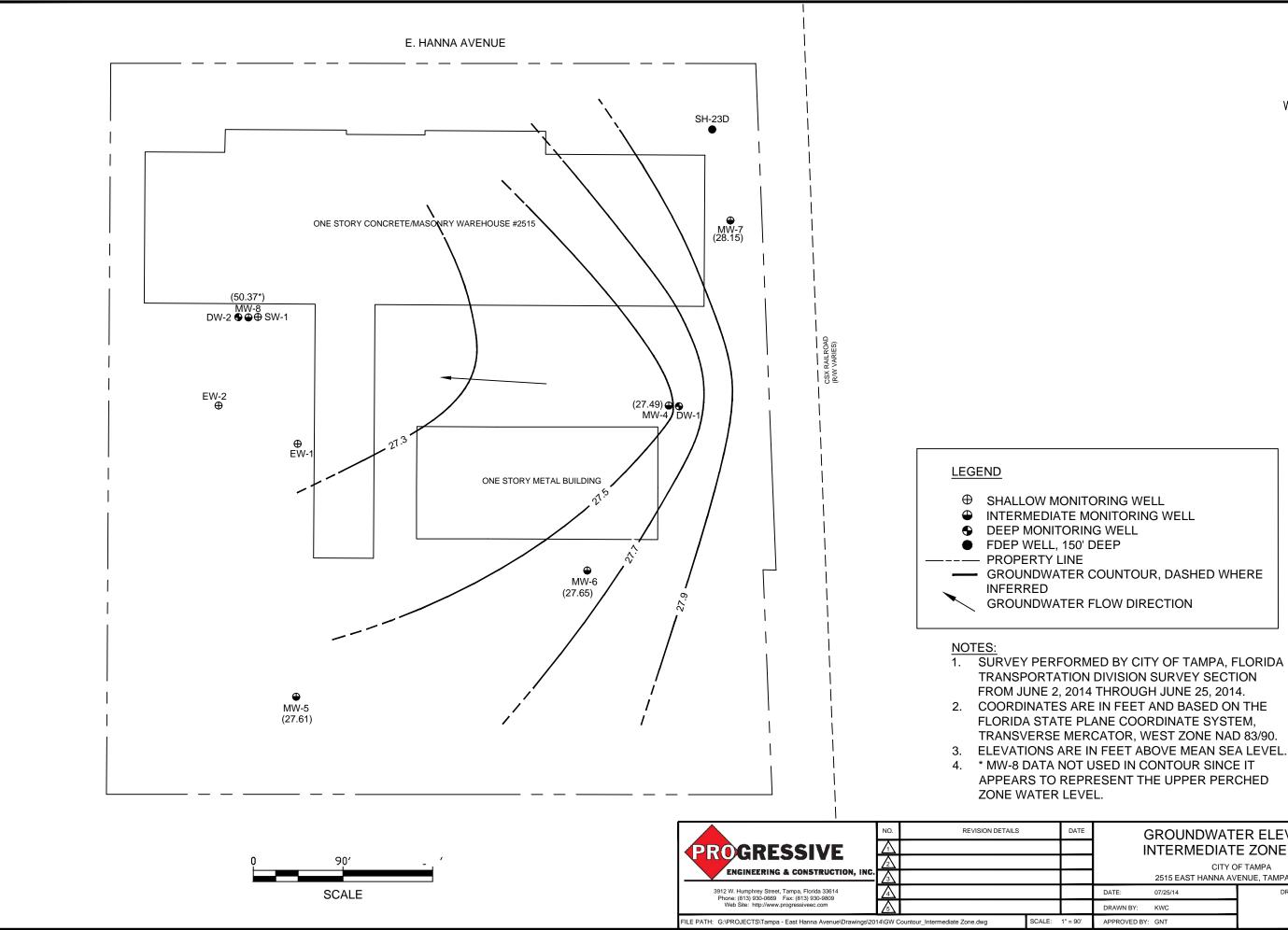
Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

FIGURES

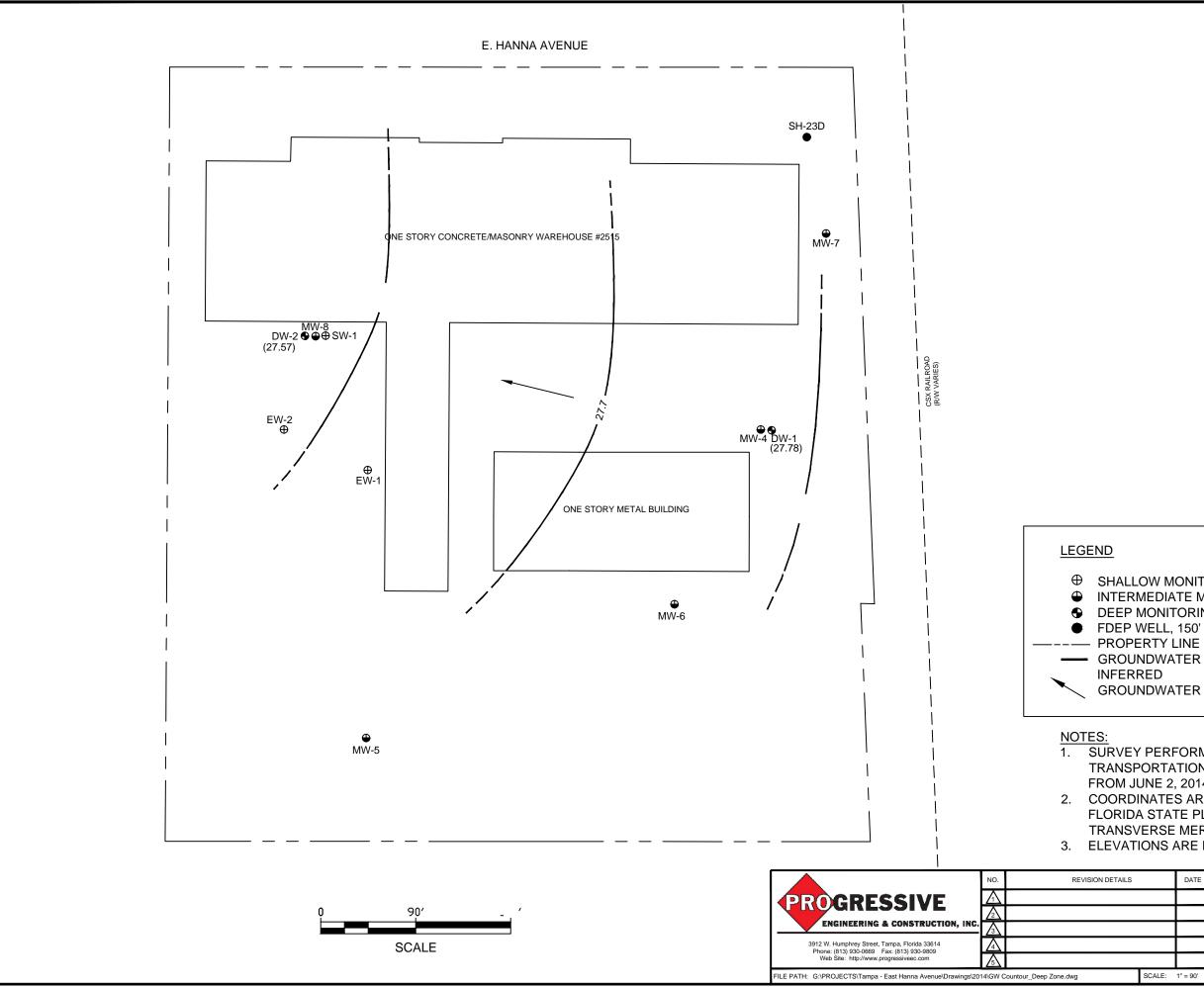




Figure 2: Lagos & Associates, Inc. Figure from Pilko & Associates, Inc. (1994)

ILS		DATE		MONITOR WE	LL LOCATIONS
				CITY O	PF TAMPA
				2515 EAST HANNA AV	ENUE, TAMPA, FL 33610
			DATE:	07/25/14	DRAWING NUMBER:
			DRAWN BY:	KWC	3
	SCALE:	1" = 90'	APPROVED BY	C GNT	


1. SURVEY PERFORMED BY CITY OF TAMPA, FLORIDA TRANSPORTATION DIVISION SURVEY SECTION FROM JUNE 2, 2014 THROUGH JUNE 25, 2014. 2. COORDINATES ARE IN FEET AND BASED ON THE FLORIDA STATE PLANE COORDINATE SYSTEM, TRANSVERSE MERCATOR, WEST ZONE NAD 83/90.

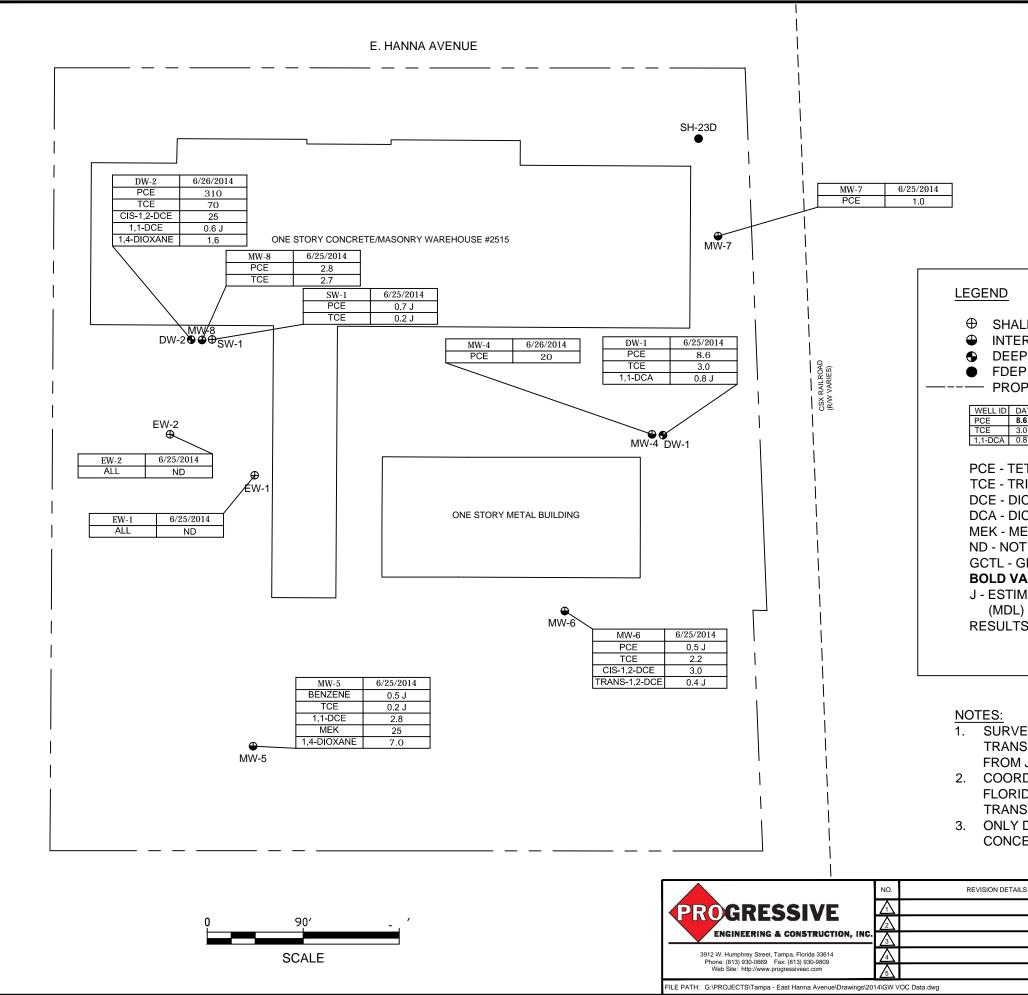
		-	SHALLOW/PE	RCHED ZONE
			CITY O	F TAMPA
			2515 EAST HANNA AV	ENUE, TAMPA, FL 33610
		DATE:	07/25/14	DRAWING NUMBER:
		DRAWN BY:	KWC	4
SCALE:	1" = 90'	APPROVED BY:	GNT	


ILS		DATE	-		ER ELEVATION E ZONE (25'-35')
					F TAMPA ENUE, TAMPA, FL 33610
			DATE:	07/25/14	DRAWING NUMBER:
			DRAWN BY:	KWC	5
	SCALE:	1" = 90'	APPROVED BY:	GNT	

2. COORDINATES ARE IN FEET AND BASED ON THE FLORIDA STATE PLANE COORDINATE SYSTEM, TRANSVERSE MERCATOR, WEST ZONE NAD 83/90. 3. ELEVATIONS ARE IN FEET ABOVE MEAN SEA LEVEL. 4. * MW-8 DATA NOT USED IN CONTOUR SINCE IT APPEARS TO REPRESENT THE UPPER PERCHED ZONE WATER LEVEL.

DATE

DEEP MONITORING WELL FDEP WELL, 150' DEEP — PROPERTY LINE - GROUNDWATER COUNTOUR, DASHED WHERE INFERRED GROUNDWATER FLOW DIRECTION



AILS		DATE	G	ROUNDWAT	ER ELEVATION
				DEEP ZO	NE (40'-50')
				CITY O	FTAMPA
				2515 EAST HANNA AV	ENUE, TAMPA, FL 33610
			DATE:	07/25/14	DRAWING NUMBER:
			DRAWN BY:	KWC	6
	SCALE:	1" = 90'	APPROVED BY:	GNT	

 SURVEY PERFORMED BY CITY OF TAMPA, FLORIDA TRANSPORTATION DIVISION SURVEY SECTION FROM JUNE 2, 2014 THROUGH JUNE 25, 2014.
 COORDINATES ARE IN FEET AND BASED ON THE FLORIDA STATE PLANE COORDINATE SYSTEM, TRANSVERSE MERCATOR, WEST ZONE NAD 83/90.
 ELEVATIONS ARE IN FEET ABOVE MEAN SEA LEVEL.

SHALLOW MONITORING WELL
 INTERMEDIATE MONITORING WELL
 DEEP MONITORING WELL
 FDEP WELL, 150' DEEP
 PROPERTY LINE
 GROUNDWATER COUNTOUR, DASHED WHERE INFERRED
 GROUNDWATER FLOW DIRECTION

		•
]
DATE 8.6 3.0 0.8 J		
ETRACHLORO RICHLOROETH NCHLOROETH NCHLOROETH METHY ETHYL DT DETECTED GROUNDWAT	HENE IENE IANE KETONE	VEL
) AND PRACT	EDS GCTL E BETWEEN METHOD DE ⁻ ICAL QUANTITATION LIMI IN MICROGRAMS PER LI	T (PQL)
ISPORTATION 1 JUNE 2, 201 RDINATES AR IDA STATE PI ISVERSE MEF	IED BY CITY OF TAMPA, F I DIVISION SURVEY SECT 4 THROUGH JUNE 25, 2014 E IN FEET AND BASED ON ANE COORDINATE SYST CATOR, WEST ZONE NAE OLATILE CONSTITUENTS	ION 4. J THE EM, D 83/90.
ALS DATE		
	GROUNDWATER VO	C CONCENTRATIONS
		PF TAMPA ENUE, TAMPA, FL 33610
	DATE: 07/25/14	DRAWING NUMBER:
	DRAWN BY: KWC	7
SCALE: 1" = 90'	APPROVED BY: GNT	

Ν

– E

W -

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

ATTACHMENT A

Well Construction Diagrams/Boring Logs

Page 1 of 1

ROJE	CT: City of	Tampa					LOCATION: 2515 E Hanna Ave, Tampa, Fl	L
	CT NO: P23						SURFACE ELEVATION: 56.81	
	STARTED: 6						TOC ELEVATION: 56.81	
	INISHED: 6						DEPTH TO WATER: 29.20	
	NG METHO						TOTAL DEPTH: 34.80	
JRILLII	NG COMPAI	NY: Casca	1	ng		1	SUPERVISOR: Nichols	
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM
				2.3		post hole 0-	-5 ft	1 7 Γ
5				2.3 2.3 2.3 2.3 2.3		It brown SA	ND	
				4.5		_		
						moist/wet to	9 ft v stiff gray CLAY	
10				5.3/6.5		v stiff gray C	CLAY, more orange with depth	
				11.1 5.7		-	at 10 ft (perched aquifer) OVA Low	Grout
				0.5			with trace limestone	
4 F				5.5			ge with gray CLAY; breaks up with some Is	
15				7.0		orange & gr	ray CLAY mixed; limerock pieces	
				22.3 5.3		-		
			-	10.8/16.3		gray CLAY:	with white limerocks trace sand	
				7.2			dy - trace clay, rock pieces	
20				7.4		gray, more	clay - sand - rock pieces	
				4.5		stiff gray CL		
				1.7		gray with wh	nite CLAY breaks up - sand and rocks	bent
				4.8		-		ă
<u></u>				5.9		-		
25				6.9 8.6		lt brown - ea	andy with some rocks	
				8.6 8.6			andy with some rooks	#
				8.1		-		33
				4.5		white - brok	en up limerock, damp	53-
30				2.1/1.6		white - bro	ken up limerock, dry	sand
				1.6		_	MARL/LIMESTONE - some rock pieces	s
				1.6		wet		20/30
_				1.7 1.7		-		5
35				1.7		-		
	+					TD = 35 ft.		2" diameter well
]							
_								
								_
40								4
								-
								-
								-
45								1
			1					1
								_
_								bent = bentonite
50	1		1				= Shelby Tube; DP = Direct Push; SC = Sonic Core; 1	

Sample Type Codes: $\mathbf{PH} = \text{Post Hole}$; $\mathbf{HA} = \text{Hand Auger}$; $\mathbf{SS} = \text{Split Spoon}$; $\mathbf{ST} = \text{Shelby Tube}$; $\mathbf{DP} = \text{Direct Push}$; $\mathbf{SC} = \text{Sonic Core}$; $\mathbf{DC} = \text{Drill Cuttings}$ Moisture Content Codes: $\mathbf{D} = \text{Dry}$; $\mathbf{M} = \text{Moist}$; $\mathbf{W} = \text{Wet}$; $\mathbf{S} = \text{Saturated}$

Page 1 of 1

		ESSIVE				Boring/Well ID: MW-6	Boring/Well ID: MW-6					
RO.IF	CT: City of					LOCATION: 2515 E Hanna Ave, Tampa,	FL					
	CT NO: P2					SURFACE ELEVATION: 51.98	· <u> </u>					
	STARTED: 6					TOC ELEVATION: 51.98						
	INISHED: 6					DEPTH TO WATER: 24.33						
	NG METHO					TOTAL DEPTH: 34.60						
	NG COMPA		de Drilli	ng		SUPERVISOR: Nichols						
			1		Ś							
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM					
						dk brown fine SAND						
						dk brown fine SAND						
						sandy CLAY - turning gray						
						gray CLAY, some small to med. SAND (white)						
5						gray CLAY (dark gray)						
				0.0								
				0.0								
				0.0		It. med. brown CLAY, small trace med. SAND						
40				0.0		It. med. gray CLAY, some SAND						
10				0.0		dense, gray CLAY						
				18.5		It. med. brown CLAY w/ SAND, limerock pieces It. med. brown CLAY - trace med. SAND						
				13.4		n. mea. brown CLAY - trace mea. SAND	Ø					
				13.2								
15				10.0 11.9								
15				10.2								
				6.5								
				7.9								
				26.5								
20			1	30.6 (12.9)								
				26.9		LIMESTONE/marl starts ≈ 20ft.						
				17.1		white marl with limerock pieces	E					
				0.0		wet 21-22'	bent					
				0.0								
25				0.0								
				0.0			S					
				0.0			ع ع					
				0.0			23-35					
20				0.0			Ř					
30				0.0			sand					
			-	0.0 0.0			s O					
			-	0.0			20/30					
				0.0			Ň					
35			-	0.0								
-			-			TD = 35 ft.	2" diameter well					
							1					
40												
_												
_												
45							bent = bentonite					
50						it Spoon; $ST = Shelby Tube; DP = Direct Push; SC = Sonic Core$						

г

Page 1 of 1

		SSIVE				Boring/Well ID: MW-7	
PRO.IF(CT: City of			9		LOCATION: 2515 E Hanna Ave, Tampa, FL	
	CT NO: P23					SURFACE ELEVATION: 51.88	
	TARTED: 6					TOC ELEVATION: 51.88	
DATE F	INISHED: 6	/17/14				DEPTH TO WATER: 23.73	
	IG METHO					TOTAL DEPTH: 35	
DRILLIN	IG COMPAI	NY: Casca	de Drill	ing		SUPERVISOR: Nichols	
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
					0,	Concrete at surface	4 - 1 1
						It. to med. brown silty SAND	
						fine grained,	
				2.1			
5				4.6/5.8		med. brown to orange fine SAND/some plastic-silt	
				6.3		med. brown SAND - clay pieces, limerock pieces ≈ 1 cm.	
_				8.7			
_				6.1		med. brown - orange, fine SAND/silt It. brown fine SAND	
10				6.3 4/3.9		It. brown fine SAND It. brown/orange fine grained SAND	
10	1			4/3.9			
				5.9		It. brown SAND - transition to orange	l interview of the second seco
				8.7		transition to gray CLAY	
15							
				12.6		gray CLAY	
				20.0		-	
20				25.2			
				6.6		wet at 20'; w/limestone pieces	
				8.3		LIMESTONE - marl	bent
				27.3			pe
05				15.1			
25				26.4 20.3		24-25' dry wet again @ 26'	<u>v</u>
				16.3			tt bls
				27.7			33
				37.6]	23-35
30				42.6			P
				18.0		4	20/30 sand
-				13.9). X
-				27.4 26.2		4	50
35				26.2		1	
						TD = 35 ft.	2" diameter well
40							-
40							4
							1
							1
			1				1
45							bent = bentonite
						4	
-							4
50							1
	uma Cadaau DL	I – Dost Holo	. U A _ I	I and Augo		l lit Spoon: ST = Shelby Tube: DP = Direct Push: SC = Sonic Core: D	C - Drill Cuttings

Sample Type Codes: $\mathbf{PH} = \text{Post Hole}$; $\mathbf{HA} = \text{Hand Auger}$; $\mathbf{SS} = \text{Split Spoon}$; $\mathbf{ST} = \text{Shelby Tube}$; $\mathbf{DP} = \text{Direct Push}$; $\mathbf{SC} = \text{Sonic Core}$; $\mathbf{DC} = \text{Drill Cuttings}$ Moisture Content Codes: $\mathbf{D} = \text{Dry}$; $\mathbf{M} = \text{Moist}$; $\mathbf{W} = \text{Wet}$; $\mathbf{S} = \text{Saturated}$

Page 1 of 1

	CT: City of						LOCATION: 2515 E Hanna Ave, Tampa, F	L
	CT NO: P23						SURFACE ELEVATION: 54.0	
	STARTED: 6						TOC ELEVATION: 54.80	
	FINISHED: 6						DEPTH TO WATER: 4.43	
	NG METHO		de Drilli	na			TOTAL DEPTH: 33.30 SUPERVISOR: Nichols	
		an casua	1		(0			
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM
				1.7		dk. brown fi		
5				2.0 2.0 2.0 2.0/6.3		It. brown SA	ND - some plastic fine grain friable ND - larger grain, stil some fine grained ND - wet (perched water table probably present here)	
				8.7 0.0		med. brown	fine SAND	
			_	19.2 12.6		-		
10				10.3		dense grav	CLAY starts @ 10'	Grout
-			L	0.0		CLAY - she	ll - sand lt. brown	હ
_				9.1		-	Y - lt. brown	
_				11.5		dry		
15				5.7 4.5		-		
10				4.5 5.1		dense grav	CLAY - some SAND	
				2.1]		
				0.6		-		
<u></u>				0.0			(+0.5 ft. limestone lense	pent
20				0.0 5.8		dense gray dense gray	CLAY and some sand and limestone	
				5.8 15.1				
_			-	18.0		1		
_				13.3				s
25				8.2		4		35 ft bls
				2.9			ne limestone	
				3.5 4.2			d. CLAY w/limestone	- 53
				5.1		dense blue		sand
30				2.4/9.0			n CLAY w/ limestone	
			<u> </u>	5.4		dense blue	CLAY	50/30
<u> </u>				10.6 21.0		-		
				21.0		1		
35				43.5		increasing F	PID was of concern	
						TD = 35 ft.		2" diameter well
_			<u> </u>					-1
_								-1
40			-					-1
-						1		1
]
_								
<u> </u>								hont - hontorite
45				├				bent = bentonite
_								-1
						1		
50			1					

Sample Type Codes: $\mathbf{PH} = \text{Post Hole}$; $\mathbf{HA} = \text{Hand Auger}$; $\mathbf{SS} = \text{Split Spoon}$; $\mathbf{ST} = \text{Shelby Tube}$; $\mathbf{DP} = \text{Direct Push}$; $\mathbf{SC} = \text{Sonic Core}$; $\mathbf{DC} = \text{Drill Cuttings}$ Moisture Content Codes: $\mathbf{D} = \text{Dry}$; $\mathbf{M} = \text{Moist}$; $\mathbf{W} = \text{Wet}$; $\mathbf{S} = \text{Saturated}$

Page 1 of 1

	CT: City of					LOCATION: 2515 E Hanna Ave, Tampa, FL
	CT NO: P2					SURFACE ELEVATION: 52.40
	TARTED: 6					TOC ELEVATION: 52.40
	INISHED: 6					DEPTH TO WATER: 24.62 TOTAL DEPTH: 49.60
			de Drill	ina		SUPERVISOR: Nichols
		v 1. 00300			(0)	
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS	GEOLOGIC DESCRIPTION
				0-1.5		dark to light brown SAND/silty SAND
_				"		
_				"		moist @ 3'
5				6.4		med. brown fine grained SAND
				10.7 15.3		dark brown fine grained SAND
				15.3		dark brown fine SAND w/small clay pieces (<1 cm)
		1		7.4		It. brown fine SAND (no plasticity)
10				1.5/10.7		
				16.0		orange silty SAND
_						
4-				10.3		
15						mod brown and arange condu CLAV stastic frights
_	8.5			8.5		med. brown and orange sandy CLAY, plastic, friable
_				15.0		light/med. Sandy CLAY, friable
_						limestone/marl
20				24.7/17.0		
				20.5		It. brown to white - weathered limestone, moist by white weathered LIMESTONE/MARL
		-		17.7		
				3.2		wet @ 23'
or —				5.8		
25				8.7		
				9.8 11.5		
				5.2		
				3.0		
30				3.7/6.5		
				30.6		
_				19.3		
				20.6		
35				6.1		
35				13.9 29.7		
				7.7		
				6.0		
_				17.2		
40				10.3		
						41-46' weathered limerock v. stiff - white - v. few stones
_						weathered limerock
45						
40						- search the search of the sea
_						med./lt. limerock - no marl
						light to med limerock - darker w/depth
			-	1		

Page 1 of 1

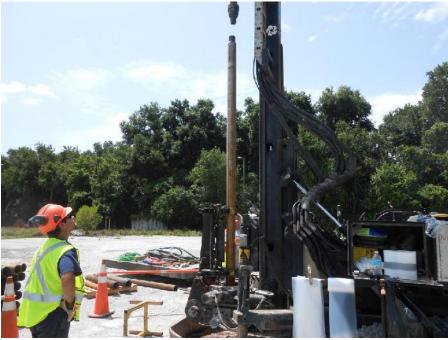
	CT: City of						LOCATION: 2515 E Hanna Ave, Tampa, FL		
	CT NO: P2					SURFACE ELEVATION: 54.90			
	STARTED: 6					TOC ELEVATION: 55.04 DEPTH TO WATER: 27.47			
	NG METHO					TOTAL DEPTH: 50.40			
			de Drill	ina		SUPERVISOR: Nichols			
					Ś				
DEPTH (feet BGS)	ELEVATION (feet above MSL)	BLOWS PER 6 INCHES	PERCENT RECOVERY	OVA (ppm) FID or PID	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM		
						12" concrete			
				<3		med. brown, silty SAND			
				<3		light to medium brown and orange sand mixed, wet			
5				<3 <3		-			
				<3 6.15		light to medium brown fine SAND			
				10.6					
_				6.1]			
_				6.0					
10				5.1/					
_				5.5		light brown clayey SAND, wet			
				11.2		4			
				19.9 6.6		less wet			
15				17.3		white, LIMESTONE, some marl, dry			
				20.0					
				24.4					
				26.3		1			
				24.9		White, increased marl, less limestone fragments			
20				12.8		1	÷		
				14.5		4	Grout		
				20.5		4	Ū		
				15.2 19.7		gray and orange CLAY			
25				19.7					
				9.1		1			
				15.5		blue CLAY (Hawthorn) w/stones			
_				7.6		w/ some shells			
				17.7					
30				9.4/16.9		4			
				32.2		4			
				41.2		-			
				66.5 65.4		4			
35				152.8					
				134.4]			
_				89.9					
				46.6		4			
40				135.4		4			
40				246.6/4.4 22.3		41.5 transitions to white limestone and marl			
				12.9					
				23.4		1	bento		
				19.2		1			
45				10.5			σ		
				2.6]	sand		
_				12.5			S Q		
				13.2			20/30		
				10.7		4	7		
50	1			9.1		1			

Page 1 of 1

PROJECT: City of Tampa LOCATION: 2918 E Hanna Ave, Tampa, FL PROJECT: City of Tampa SUPRACE ELEVATION: 5434 OPEN-TATE DATE STRATED: 01814 TOC ELEVATION: 5434 OPEN-TATE DATE STRATED: 01814 DEPT OPEN-TATE OPEN-TATE DRILLING COMPANY: Case and the strategy of the strate			ESSIVE	TION. INC.			Boring/We	Boring/Well ID: SW-1		
PROJECT NO. 5224' SURFACE ELEVATION: 54.7 DATE STARTES 018/14 DEPTH TO WATER: 3.75 DOME DATE STARTES 018/14 DEPTH TO WATER: 3.75 DOME DRILLING COMPANY: Cascade Dalling SUPERVISE: Nichols VIEL DIAGRAM DRILLING COMPANY: Cascade Dalling SUPERVISE: Nichols VIEL DIAGRAM Total of the start of		CT: City of	Tampa				LOCATION	LOCATION: 2515 E Hanna Ave. Tampa. FL		
DATE STARTED: 6718/14 DATE FINISHER 0818/14 DEPTH TO WATER: 375 DRILLING METHOD: Sonic TOTAL DEPTH: 9.5.5 DRILLING METHOD: Sonic TOTAL DEPTH: 9.5.5 DRILLING COMMANY: Casada Dilling UVELL DIAGRAM C 20 C 20	PROJE		324							
DATE FINISHED 6/16/14 DEPTH TO WATER: 375 DRILLING COMPANY: Cascade Dolling DRILLING COMPANY: Cascade Dolling DRILLIN										
DRILING METHOD: Sonic TOTAL DEPTH: 9.55 DRILING COMMANY: Geode Dilling SUPERVISOR: Nichols WELL DIAGRAM Edging of the geode dilling Edging of the geode dilling GeoLogic DESCRIPTION WELL DIAGRAM Edging of the geode dilling Image: Signature dilling GeoLogic DESCRIPTION WELL DIAGRAM Image: Signature dilling Image: Signature dilling GeoLogic DESCRIPTION Image: Signature dilling WELL DIAGRAM Image: Signature dilling Image: Signature dilling Image: Signature dilling WELL DIAGRAM Image: Signature dilling WELL DIAGRAM Image: Signature dilling Image: Signature dilling Image: Signature dilling WELL DIAGRAM Image: Signature dilling WELL DIAGRAM Image: Signature dilling Image: Signature dilling Image: Signature dilling WELL DIAGRAM Image: Signature dilling Image: Signature dilling Image: Signature dilling Image: Signature dilling Image: Signature dilling Image: Signature dilling Image: Signature dilling Image: Signature dilling Image: Signature dilling Image: Signature dilling Image: Signature dilling Image: Signature dilling										
DRILLING COMPANY: Cascade Drilling SUPERVISOR: Nichols # 600 # 10 - 0 -										
team team <thteam< th=""> team team <tht< td=""><td></td><td></td><td></td><td>do Dell'</td><td>~~</td><td></td><td></td><td colspan="3"></td></tht<></thteam<>				do Dell'	~~					
Image: constraint of the second sec	URILLIN		NY: Casca	í.	ng		SUPERVISO			
Image: constraint of the second sec	DEPTH set BGS)	EVATION et above MSL)	BLOWS PER 6 NCHES	ERCENT COVERY	/A (ppm) D or PID	IL CLASS	GEOLOG	IC DESCRIPTION	WELL DIAGRAM	
26 Ince, sity SAND 5 70 9726.6 9.35 PD = 6.1 9726.6 9.45 PD = 7.0 4890.0 9.772.6 10 75.0 10 75.0 10 75.0 10 75.0 11 65.0 12 10 15 9.772.6 15 9.772.6 16 9.772.6 17 9.772.6 18 9.772.6 19 75.0 10 75.0 15 9 16 9 17 9 18 9 20 9 20 9 20 9 21 9 22 9 33 9 34 9 35 9 36 9 37 9 38 9 9	l (fe	EL (fe	ш _	IL IL	δĒ	SO				
7.4 0.3.5 PID = 6.1 9.7726.6 9.7726.6 480.0 9.45 PID = 7.0 480.0 21.0 480.0 21.0 480.0 21.0 480.0 21.0 480.0 21.0 9.7726.6 9.5 PID = 7.0 9.7726.6 9.5 PID = 7.0 9.7726.7 9.5 PID = 7.0 9.7727.7 9.5 PID = 7.0 <										
7.4 0.3.5 PID = 6.1 9.7726.6 9.7726.6 480.0 9.45 PID = 7.0 480.0 21.0 480.0 21.0 480.0 21.0 480.0 21.0 480.0 21.0 9.7726.6 9.5 PID = 7.0 9.7726.6 9.5 PID = 7.0 9.7726.7 9.5 PID = 7.0 9.7727.7 9.5 PID = 7.0 <					2.6				pe	
5 0 70 84.5° PID = 7.0 0 97.226.6 486.0 10 75.0 2-inch diameter well 10 75.0					7.4		@ 3.5' PID = 6.1			
10 65.0 - 2-inch diameter well 10 75.0 - - 2-inch diameter well 15 -					4.7					
10 65.0 - 2-inch diameter well 10 75.0 - - 2-inch diameter well 15 -	5				7.0		@4.5' PID = 7.0		8	
10 65.0 - 2-inch diameter well 10 75.0 - - 2-inch diameter well 15 -	-								a sa	
10 65.0 - 2-inch diameter well 10 75.0 - - 2-inch diameter well 15 -									l l l l l l l l l l l l l l l l l l l	
10 65.0 - 2-inch diameter well 10 75.0 - - 2-inch diameter well 15 -										
10 75.0 2-inch diameter well 15 1 1 15 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 21 1 1 22 1 1 30 1 1 30 1 1 31 1 1 40 1 1 40 1 1 40 1 1 40 1 1 41 1 1 42 1 1 43 1 1 44 1 1 45 1 1 46 1 1 47 1 1 48 1 1 49 1 1 40 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
20 15 20 20 20 20 20 20 20 20 20 20	10									
15 0					75.0				2-inch diamatar wall	
Image: second										
Image: second	_									
Image: second									1	
Image: second										
20	15								.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									gr = grout	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25								1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-							1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30								1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35								1	
									1	
									1	
									1	
	40								1	
	40								1	
									1	
	_								1	
									1	
	45								4	
50 50										
50 50	_								1	
50									1	
	50									

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

ATTACHMENT B


Photo Documentation of Well Installations

Limited Phase II Site Investigation Former General Cable Facility Property 2515 E. Hanna Avenue, Tampa, FL

ATTACHMENT B: PHOTOGRAPHIC DOCUMENTATION

MW-4 – Completed by Others

MW-5 Installation

Limited Phase II Site Investigation Former General Cable Facility Property 2515 E. Hanna Avenue, Tampa, FL

ATTACHMENT B: PHOTOGRAPHIC DOCUMENTATION

MW-6 Well Pad – Completed

MW-7 Well Pad – Completed

Limited Phase II Site Investigation Former General Cable Facility Property 2515 E. Hanna Avenue, Tampa, FL

ATTACHMENT B: PHOTOGRAPHIC DOCUMENTATION

MW-8 Installation

SW-1 Well Pad – Completed

Limited Phase II Site Investigation Former General Cable Facility Property 2515 E. Hanna Avenue, Tampa, FL

ATTACHMENT B: PHOTOGRAPHIC DOCUMENTATION

DW-1 Well Pad – Completed

DW-2 Well Pad – Completed

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

ATTACHMENT C

Groundwater Sampling Logs

G:\PROJECTS\Tampa - East Hanna Avenue\Reports\Report_East Hanna Ave.docx

WELL NO:	DW-2	-	DATE: 6	26/14	SAMPLE ID:	5-w(PROJECT NO:	82324			
TE NAME:	Ch	y at Tam				SITE LOCATIO	N: 2515	E Ham		Touto	.A	
					PURGI	IG DATA						
/ELL IAMETER (in	ches): 2	TUBING DIAMETER (inc	ches): 🛰 🔍	1.0010.000	NINTERVAL DEPTH:	STATIC DEPTI TO WATER (fe	et): 27.4	TOTAL 50 DEPTH: 24	OD BAILED			
ELL VOLUN	E PURGE: 1 V	Contraction and the second second second			C DEPTH TO WATER							
only fill out if a	applicable)			= (50	feet –	27. 47	feet) X	cib 9	allons/foot =	3.6	gailons	
ITIAL PUMP	OR TUBING	NA	FINAL PUMP	OR TUBING	NA			PURGING	TOTAL VOL		and the second	
EPTH IN WE	LL (feet):	1	DEPTH IN W		I V far	INITIATED AT:	755	ENDED AT: DISSOLVED	846	PURGED (gal	lons): 4.0	
	VOLUME	CUMUL. VOLUME	PURGE RATE	DEPTH TO	рН	COND.	TURBIDITY	CONSTEN N	TEMP	ORP		
TIME	PURGED (gallons)	PURGED (gallons)	(gpm or ml/min)	WATER (feet)	(standard units) (<u>+</u> 0.1 units)	(μS/cm) (<u>+</u> 3%)	(NTUs) (<u>+</u> 10%)	saturation) (<u>+</u> 10%)	([°] C) (<u>+</u> 1 [°] C)	(mV) (<u>+</u> 19 mV)	COLOR/ ODOF (describe)	
650	-	-	-		7.42	421.0	-	1.08	27.9	- 27.6	club /	
			-									
		0							1.	-		
										*		
		_	1	î l								
			1		100							
										-		
										-		
	TV (College De	- Cooli: 0.75" -	0.00: 4" = 0	04. 4.95% - 0.0	6; 2" = 0.16; 3" = 0	0.97: 4% = 0.65	Ell = 1 02	C ¹ = 1 47; 0 ¹¹ = 1	1.61, 10% -1.0	P: 40% - 5.00		
ELL CAPACI	TY (Gallons Pe	r Foot): 0.75" =	0.02; 1"=0.	04; 1.25" = 0.0						8; 12" = 5,88		
	(PRINT) / AFFI			SAMPLER(S) S	IGNATURES:	-	1	SAMPLING INITIATED AT:	847	SAMPLING ENDED AT:	850	
JMP OR TUE	C.N.C			SAMPLE PUMP	/			TUBING		choco / n.	2.943.970	
EPTH IN WE	L (feet):	NP		FLOW RATE (n FIELD FILTERE	and the second se	NP	R SIZE:	MATERIAL CODE: micron	NP			
ELD DECON	TAMINATION;	Y (N)		Filtration Equipa		11010			DUPLICATE:	Y	(R)	
		MPLE CONTAIN										
-		SPECIFICATION # of	MATERIAL		PRESERVATIVE	SAMPLE PRES TOTAL			INTENDER	ANALYSIS	SAMPLING EQUIPMENT	
SAMPLE		CONTAINERS	CODE	VOLUME	USED	ADDED IN F	IELD (mL)	FINAL pH		METHOD	CODE	
54	(01											
								1		_		
MARKS												
EMARKS:		2										

1000

ENGINEERING & CONSTRUCTION, INC.

GROUNDWATER SAMPLING LOG

	TELL NO: DW-2. DATE: 6/25/14 SAMPLE ID:							PROJECT NO:	8237	24		
SITE NAME:						SITE LOCATIO	IN:					
					PURGIN	IG DATA						
WELL	-	TUBING	21	WELL SCREE	N INTERVAL DEPTH:	STATIC DEPTI		TOTAL	PURGE PUM			
DIAMETER (inc		DIAMETER (incl	hes): 16	45 feet to	γU feet	TO WATER (fe		DEPTH: 7 50	OR BAILER:	sub p	m.	
		ELL VOLUME =	(TOTAL WELL	DEPTH - STAT	TIC DEPTH TO WATER)	x WELL CAPA	ACITY					
(only fill out if ap	pplicable))		= (5	o feet-	27.47	feet)	0-16	gallons/foot =	3.6	gallons	
NITIAL PUMP (OR TUBING		FINAL PUMP		- <u></u>	PURGING		PURGING		TOTAL VOLU		
DEPTH IN WEL			QEPTH IN W			INITIATED AT:	625	ENDED AT:		PURGED (ga		
		CUMUL.	PURGE	DEPTH			<u></u>	DISSULVED OXYGEN				
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	RATE (gpm or ml/min)	TO WATER (feet)	pH (standard units) (<u>+</u> 0.1 units)	COND. (μS/cm) (± 3%)	TURBIDITY (NTUs) (± 10%)	oxyGEN (mg) or % saturation) (± 10%)	TEMP (⁰ C) (± 1 ⁰ C)	ORP (mV) (± 19 mV)	COLOR/ ODO (describe)	
and the local division of the local division	0.5	0.5	0.1	27.54	7.09	457.2		0.28	22.4	-24.3	nem (1	
1630	05							1				
1033	03								_			
1690								1			-	
1613							k	www.	_		-	
							4	U				
						Ω.	17 84	1	_			
					1 200	f.u	1	1.100	120			
						•		w. 1				
							720		0			
	y						1.08	1 ~				
						1	1	Lad				
				-		1	-13		_		1	
									_	13		
						· »						
							/					
	TY (Gallons Pe	r Foot): 0 75" =	0.02 1" = 0	04· 1.25" = 0	.06; 2" = 0,16; 3" =	0.37; 4" = 0.6	5; 5 " = 1.02)	6" = 1.47; 8"=	= 2.61; 10" =4.0	B; 12'' = 5.88		
TELE OAI AOI		11000. 0.10	0.02, 1 0.			NG DATA		1				
SAMPLED BY (PRINT) / AFFI	IATION:		SAMPLER(S)				SAMPLING		SAMPLING		
							INITIATED AT: ENDED AT:					
UMP OR TUBI	ING			SAMPLE PUM	PLE PUMP				TUBING			
DEPTH IN WEL	L (feet):				mL per minute):			MATERIAL CODE:				
				FIELD FILTER		FILTE	R SIZE:	micron				
TELD DECONT				Filtration Equip	ment Type:				DUPLICATE:	Y	N	
		MPLE CONTAINI				A			N			
		SPECIFICATION			PRESERVATIVE	SAMPLE PRES		ľ	-\		SAMPLING	
		# of	MATERIAL	NOLUME	USED			CINIAL	- A	D ANALYSIS METHOD	EQUIPMENT CODE	
SAMPLE I	D CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN I	FIELD (ML)	FINAL p	H AND/OF	METHOD	CODE	
_												
						1						
									1	8		
						(1				
									2.			
EMARKS												
REMARKS:												
REMARKS:												
REMARKS:												
REMARKS:												
REMARKS: MATERIAL COE	DES: AG	G = Amber Glass;	CG = Clear	Glass; PE =	Polyethylene; PP = F	olypropylene;	S = Silicone;	T = Teflon; O :	= Other (Specify)			

-

VELL NO:	Mw.4		DATE:	26/14	SAMPLE ID:	wy		PROJECT NO:	67	324	
ITE NAME:	Ch	S T.	mpa			SITE LOCATIO	DN: 25	15 E Ha		Tanpa	- FL
	~ 1		-1	9h	PURGIN	G DATA					
ELL AMETER (1	nches): 2	TUBING DIAMETER (inc	IN 345 thes): 4-15		N INTERVAL DEPTH:	STATIC DEPT TO WATER (fe	H eet): 25.06		PURGE PUM		
		ELL VOLUME =	(TOTAL WELI		IC DEPTH TO WATER;						
nly fill out if	applicable)			= (28	. G feet -	25.06	feet) >	aoy ga	llons/foot	0.14 3	gallons
TIAL PUM	P OR TUBING	NA	FINAL PUMP	OR TUBING	. 1.4	PURGING		PURGING	10.027	TOTAL VOLU	ME
EPTH IN W	ELL (feet);	E	DEPTH IN W		NA	INITIATED AT:		ENDED AT: DISSOLVED	_	PURGED (ga	lions): 0-17
	VOLUME	CUMUL. VOLUME	PURGE RATE	DEPTH TO	pН	COND.	TURBIDITY	mpl or %	TEMP	ORP	
TIME	PURGED (gallons)	PURGED (gallons)	(gpm or ml/min)	WATER (feet)	(standard units) (<u>+</u> 0.1 units)	(μS/cm) (<u>+</u> 3%)	(NTUs) (<u>+</u> 10%)	saturation) (± 10%)	(⁰ C) (<u>+</u> 1 ⁰ C)	(mV) (<u>+</u> 19 mV)	COLOR/ ODOF (describe)
245	0.14	0.14	-	25.70	6.91	330.7	1	2.49	25.4	17.0	dry / me
					1						
										1	
						1.	-1450				1.1
		-									
							1				
_											
							tha .				
								11 			
	ITX (Gallons Par	Foot): 0.75" - (02: 1"-0	1 25" - 0 (06; 2" = 0.16; 3" = 0	27: 4"=0.66	<i>E²</i> = 1.02	6 ¹¹ - 1 47, 9 ¹¹ - 0	61. 10" = 1.00	107 - 5.00	
_			J.02, 1 - 0.0	J4; 1.25 - 0.0	SAMPLIN		5; 5 = 1,02;	6" = 1,47; 8" = 2,1	61; 10 =4.08	5; 12" = 5.88	
MPLED BY	(PRINT) / AFFILI		0	SAMPLER(S) S	IGNATURES:			SAMPLING INITIATED AT:	-	SAMPLING ENDED AT:	-
MP OR TU		Mar S	1	SAMPLE PUMP	, , ,	-		TUBING			
PTH IN WE	LL (feet):	NA		FLOW RATE (IN FIELD FILTERE		NA	R SIZE:	MATERIAL CODE: micron	NA	·	
LD DECON	TAMINATION:	Y (N)		Filtration Equipr					DUPLICATE:	Y	0
		PLE CONTAINE	R			SAMPLE PRES	EPVATION				
		# of	MATERIAL		PRESERVATIVE	TOTAL			INTENDED	ANALYSIS	SAMPLING EQUIPMENT
in traverage		CONTAINERS	CODE	VOLUME	USED	ADDED IN F	IELD (mL)	FINAL pH		METHOD	CODE
sa	(0)					19					_
_											
ARKS:											
	ud eno	ugh He (ma	ell to	allect my	67					
		3 1	520 M/G		A	0. RS					

P

	ENGINEERIN	G & CONSTRU				GROU	NDWAT		IPLING L	OG	_
ELL NO:	SW.		DATE:	125 /14	SAMPLE ID: 5	wl		PROJECT NO	P232	4	
TE NAME:	Chy	1210 HU7140	son			SITE LOCATIO	SN:	sis e	Huma A	e Tonto	.R
					PURGIN	IG DATA		Irora		DITYPE	
ELL AMETER (ir	iches); 2	TUBING DIAMETER (inc	hes): 7/8	VELL SCREE	NINTERVAL DEPTH:	TO WATER (N		DEPTH:	OR BAILER:	P TYPE	
					C DEPTH TO WATER	and the second se					
nly fill out if										1.0	
				= (0 feet -	3.75	feet) >	~	gallons/foot =	1.0	gallo
	OR TUBING	E	FINAL PUMP		8	PURGING	1542	PURGING ENDED AT:	1554	TOTAL VOLU PURGED (gal	
EPTH IN WE	LL (feet)		DEPTH IN W	1/		INTIALEDAT		DISSOLVE	D	I GITCLE (34	T
	VOLUME	CUMUL. VOLUME	PURGE RATE	DEPTH TO	рН	COND.	TURBIDITY	mgD or 9	TEMP	ORP	
TIME	PURGED (gallons)	PURGED (gallons)	(gpm or ml/min)	WATER (feet)	(standard units) (+ 0.1 units)	(μS/cm) (<u>+</u> 3%)	(NTUs) (± 10%)	saturation (± 10%)) (⁰ C) (<u>+</u> 1 ⁰ C)	(mV) (± 19 mV)	COLOR/ OL (describe
1545	v 3	0.3	0.1	4.42	6.42	294.2	163	0.44		-5.5	me) o
1578	0.3	0.6	0.1	4.53	6.37	290.9	149	0.36		-3.0	-
1551	0.3	0.9	0.1	4.62	6.29	288.8	100.5	0.28		-3.6	1.1
1554	0.3	1.20	0.1	4.66	4.28	292.2	19.4	M.24	1	- 6.1	-
1001						ere.					1
									10		·
			1								
ELL CAPAC	ITY (Gallons Pe	er Foot): 0.75" =	0.02; 1" = 0	04; 1.25" = 0.	06; 2" = 0.16; 3" =	0.37; 4" = 0.6	i5; 5" = 1.02;	6" = 1.47; 8	"= 2.61; 10" =4.0	8; 12" = 5.88	
MPLED BY	(PRINT) / AFFI	LIATION:		SAMPLER(S)		NG DATA		SAMPLING		SAMPLING	10
	0	Nichels			1			INITIATED AT:	1555	ENDED AT:	1602
MP OR TU		90		SAMPLE PUM	Р	< 700		TUBING	DE: PE		
PTH IN WE	LL (feet)	0		FLOW RATE (R SIZE:	MATERIAL CO micron			-
	TAMINATION:	D N		Filtration Equip	<u> </u>				DUPLICATE:	Y	G
LD DLOON		MPLE CONTAIN	ER								
		SPECIFICATION				SAMPLE PRE					SAMPLING
		# of	MATERIAL	VOLUME	PRESERVATIVE USED		L VOL FIELD (mL)	FINAL		ANALYSIS	EQUIPMEN CODE
	ID CODE	CONTAINERS	CODE	VOLUNIE	UULD	ADDED IN		- ritte		METHOD	CODE
10	Loc	-									
								_			
-											
			1		(
MARKS:				/							
	4 57	rong od	2		white (clos		2				
	, I.,	orh. I have	mb red.	much.	white Color	indy was	hr)				
	~ *Y	A se beal									
TERIAL CO		G = Amber Glass	CG = Clear	Glass; PE =	Polyethylene; PP = F	olypropylene;	S = Silicone;	T = Teflon; C	= Other (Specify)		
MPLING/PI		P = After Peristalti			BP = Bladder Pump;	ESP = Electric	Submersible P	ump; PP = I	Peristaltic Pump		

VELL NO:	Mw.E		DATE: 6/2	sha	SAMPLE ID: NW			PROJECT NO:	PZZZY		
TE NAME:	rt.	, of Tan		- 11-1	110	SITE LOCATIC	N: 251	5 E How	22.648	Taya	CI
	Un) of 1 an			PURGIN	IG DATA	601	C Press	und part	Ima	PC
VELL	ches): 2		hes): 3(8	WELL SCREE	N INTERVAL DEPTH:	STATIC DEPT TO WATER (fe		TOTAL 35	PURGE PUM OR BAILER:	P TYPE	
AMETER (in		DIAMETER (inc	(TOTAL WELL	DEPTH - STAT	5 feet			DEPTHE	OR BAILER.	4.1	
only fill out if							0		0012052-22	4. 89	
	OR TUBING	2-2.5	FINAL PUMP		5 feet-	4.43 PURGING	feet) >		allons/foot 🔎	TOTAL VOLU	gallon
EPTH IN WE		34	DEPTH IN W		34	INITIATED AT:	(423		1513	PURGED (gall	
	1. 127	CUMUL.	, PURGE	DEPTH				OXYGEN	TEMP	1.000	
	VOLUME PURGED	VOLUME PURGED	RATE (gpm or	TO WATER	pH (standard units)	COND. (µS/cm)	TURBIDITY (NTUs)	(ng/L)or % saturation)	(°C)	ORP (mV)	COLOR/ ODC
TIME	(gallons)	(gallons)	ml/min)	(feet)	(± 0.1 units)	(<u>+</u> 3%)	(<u>+</u> 10%)	(<u>+</u> 10%)	(± 1 °C)	(<u>+</u> 19 mV)	(describe)
1428	0.5	0.5	0.1	4.18	5.42	1225	6.01	0.91	28.3	33.9	um /m
1433	0.5	1.0	0.1	4.18	5.30	119.1	4.91	0.78	28.2	28.0	
1438	0.5	1.5	0-1	4.15	5.08	99.8	6.44 5.44	6.89	28.0	34.7	
1448	0.5	2.5	0.1	1.18	4.96	100.3	5.67	0.70	27.9	37.3	**
1453	0.5	3.0	0.1	4.18	4.97	18.0	4.91	0.89	28.0	37.5	**
1558	0.5	3.5	0.1	4.19	4.97	98.6	4-64	0.99	28.0	40.1	**
1503	0.5	4.0	0.1	4.18	4.97	95.7	4.08	0.89	28.1	37.5	~
1508	0.5	4.5	0.1	4.12	4.98	16.4	3.28	0.89	28.0	36.4	**
1513	0.5	5.0	0.1	4.18	4.99	95.8	4.12	0. 89	28.0	37.1	
Contraction of the									-		
											-
			/						-		
				-					-		
_											-
ELL CAPAC	I ITY (Gallons Pe	r Foot): 0.75" = 0	0.02; 1 " = 0.	04; 1.25" = 0.	06; 2 ⁿ = 0.16; 3 ⁿ = 0	0,37; 4" = 0.6	5; 5" = 1.02;	6" = 1.47; 8"= 2	2.61; 10" =4.08	12" = 5.88	
		IATION.			SAMPLIN	G DATA		SAMPLING		SAMPLING	
AMPLEDBY	(PRINT) / AFFIL	S.chuls		SAMPLER(S)	SIGNATURES:	7		INITIATED AT:	1514	ENDED AT:	1529
UMP OR TUE				SAMPLE PUM	P	LION		TUBING	7.855.85		
EPTH IN WE	LL (feet):	39		FLOW RATE (-	D 0175. A. U	MATERIAL CODE:	re		
	TAMINATION:	N N		FIELD FILTER Filtration Equip	~ ~	PILTE	R SIZE: 0.9		DUPLICATE:	~	N
ELD DECON	2 1.1 I.Y	MPLE CONTAIN	ER						DOI LIONIL.		C
		SPECIFICATION				SAMPLE PRES					SAMPLING
CAMPLE	ID CODE	# of CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL ADDED IN I		FINAL pH		ANALYSIS METHOD	EQUIPMENT CODE
>U	(OL	CONTAINERS	CODE	VOLOWIE	COLD	ADDED IN	need (me)	Custor No.	ANDION	METHOD	CODE
	••••		5								
	_									1	1
EMARKS:											

PR	GRESSIVE
	ENGINEERING & CONSTRUCT

Y		G & CONSTRUC				GROUI	NDWAT			ING LC	16	
VELL NO:	EW-2		DATE: 6	x m	SAMPLE ID: EL	1.2		PROJECT NO	:	PZZU	1	
ITE NAME;	C.m		mph			SITE LOCATIC	2513	SEI	tan	m Ar	Vary.	n FL
-	0.1			_		G DATA			CAMP IN			
VELL		TUBING	310	WELL SCREE		STATIC DEPT		TOTAL 7.		PURGE PUMF OR BAILER:	MP .	
AMETER (Inc	thes): 2 E PURGE: 1 W	DIAMETER (Inch ELL VOLUME = (C DEPTH TO WATER)						- 10 m	
only fill out if a					,70 feet-	3.10		0.14	gallo	ons/foot =	1.05	gallons
NITIAL PUMP	OR TUBING	0.0	FINAL PUMP		24	PURGING		PURGING		TOTAL VOLU PURGED (gal		ME 125
EPTH IN WEL	L (feet):	9.0	DEPTH IN WI	ELL (feet):	9.0	INITIATED AT:	1357	ENDED AT:	0	100	PURGED (ga	lons): 1.25
	VOLUME	CUMUL. VOLUME	PURGE RATE	DEPTH TO	pН	COND.	TURBIDITY	OXYGEN Or S	6	TEMP	ORP	197213
TIME	PURGED	PURGED (gallons)	(gpm or ml/min)	WATER (feet)	(standard units) (<u>+</u> 0.1 units)	(μS/cm) (<u>+</u> 3%)	(NTUs) (<u>+</u> 10%)	saturation (± 10%))	(⁰ C) (<u>+</u> 1 ⁰ C)	(mV) (<u>+</u> 19 mV)	COLOR/ ODO (describe)
1354	(gallons)	0.25	6.1	3.26	4.18	77.3	19.8	2.70		31.3	86.3	non ha
1357	0.25	u.50	0.1	3.26	4.06	11.7	22.3	2.67		31.6	64.1	H
1400	015	4.15	0.1	3.26	4.06	17.9	14.2	2.68		31.8	60.9	*
1403	0.25	1.0	0.1	3.20	4.05	76.8	7.88	2.76		31.8	67.6	
1406	0.25	1.25	0.1	3.26	4.03	75.3	6.15	2.78	5	31.8	62.2	*
1100		10.0.0	0.1									
												1
		1										
						L		(
												·
÷:												
VELL CAPACI	TY (Gallons Pe	er Foot): 0.75" =	0.02; 1" = 0,	04; 1.25" = 0	06; 2" = 0.16; 3" =	0.37; 4'' = 0.6	65; 5 [°] = 1.02;	6" = 1.47;	8"≂ 2.6	1; 10" = 4.08	3; 12" = 5,88	
SAMPLED BY	(PRINT) / AFFI	LIATION		SAMPLER(S)		NG DATA		SAMPLING			SAMPLING	11.00
		, planely	i						ENDED AT:	1409		
PUMP OR TUE		8.0		SAMPLE PUM	-E PUMP							
DEPTH IN WE	LL (feet)	1.0			ATE (mL per minute):				and the second s			
IELD DECON	TAMINIATIONI	() N		Call Street of the second	FILD FILTERED: Y S FILTER SIZE:				micronDUPLICAT			N
ILLU DECON		MPLE CONTAIN	ER									
12		SPECIFICATION				SAMPLE PRE						SAMPLING
	10.0005	# of	MATERIAL	VOLUME	PRESERVATIVE		L VOL FIELD (mL)	FINAL pH		INTENDED ANALYSIS AND/OR METHOD		EQUIPMENT
SAMPLE	OC (OC	CONTAINERS	CODE	VOLUME	0025	ADDED IN			P.C.			
su	(DC											
_												
				-								
REMARKS:		-			1							
	1000		CG = Clear	Closes: DE -	Polyethylene; PP =	Deliverendezee	S = Silicone;	T - Toflon:	$\Omega = \Omega t$	her (Specify)		
	5: A	G = Amber Glass;	CG - Clear	Glass, FE-	Polyetnylene, FF -		ic Submersible P			altic Pump		

PR	OGRESSIVE
	ENGINEERING & CONSTRUCT

\sim	ENGINEERIN	G & CONSTRUC	CTION, INC.				NDWAT	ER SAMP	LING L	OG	
WELL NO:	MW-S		DATE:	25/14	SAMPLE ID:	5		PROJECT NO:	PZZZM	1	
SITE NAME:	(.4	of Tm				SITE LOCATIO	2515	SEH	100 C C C C C C C C C C C C C C C C C C	c Tang	FL
	<u> </u>				PURGIN	G DATA					
WELL DIAMETER (in	. 2	TUBING DIAMETER (incl	510	WELL SCREE		STATIC DEPT TO WATER (fe		TOTAL	PURGE PUN OR BAILER:	IP TYPE	
WELL VOLUM	Ches):	VELL VOLUME =	(TOTAL WELL		C DEPTH TO WATER)			DEITHIOT	ON BALLEN.		
(only fill out if a			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								. 13 gallons
				= (3	5 feet- 2	9.20	feet) X		allons/foot =		
INITIAL PUMP		31.5	FINAL PUMP		34.5	PURGING	17.70	PURGING ENDED AT:	1237	TOTAL VOLU PURGED (gal	1 7
DEPTH IN WE	LL (feet):	1	DEPTH IN W	and the second s		INTIATED AT	1000	OXYGEN	10.51	i onorb (gu	
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pН	COND.	TURBIDITY	mg) or %	TEMP (⁰ C)	ORP	COLOR/ ODOF
TIME	PURGED (gallons)	PURGED (gallons)	(gpm or ml/min)	WATER (feet)	(standard units) (<u>+</u> 0.1 units)	(μS/cm) (± 3%)	(NTUs) (<u>+</u> 10%)	saturation) (+ 10%)	(±1°C)	(mV) (<u>+</u> 19 mV)	(describe)
1225	0.5	0.5	0.1	30.27	7.07	470.5	273	0.83	27.7	0.6	ampa
1230	0.3	0.8	0.1	30.95	6.80	478.0	524	0.43	28.1	-3.0	
11235	0.3	1.1	0.1	31.31	6.76	420.9	361	0.46	28.2	-4.5	-
1290123		1.4	0.1	31.64	4.77	424.2	107.2	0.52	21.8	-6.1	
1237	0.3	1.7	0.1	32.09	6.79	485.1	64.9	0.48	27.7	-10.9	*
								<u> </u>			
										-	
						·					
_											-
	2										
								5	-		
-								1			
	(·										
	1					5					
WELL CAPAC	ITY (Gallons Pe	er Foot): 0.75" =	0.02; 1" = 0.	04: 1.25" = 0.	06; 2" = 0.16; 3" =		5; 5" = 1.02;	6" = 1.47; 8"= 2	2.61; 10" =4.0	98; 12" = 5.88	
SAMPLED BY				SAMPLER(S)		NG DATA		SAMPLING	-	SAMPLING	
SAMPLED DT		/ C.	J. chis	DAMI LEN(O)	T			INITIATED AT:	1238	ENDED AT:	1356
PUMP OR TUE	BING	7		SAMPLE PUM	P	1000		TUBING	or	1	
DEPTH IN WE	LL (feet)	0 34.5		FLOW RATE (FLOW RATE (mL per minute):				MATERIAL CODE: PE		
FIELD DECON		$(\gamma)_{N}$		Filtration Equip		1141			DUPLICATE:	Y	(N)
		AMPLE CONTAIN	ER						1		
		SPECIFICATION				SAMPLE PRE			S		SAMPLING
CANDLE	ID CODE	# of CONTAINERS	MATERIAL	VOLUME	PRESERVATIVE		L VOL FIELD (mL)	FINAL pH		D ANALYSIS R METHOD	EQUIPMENT CODE
		CUNTAINERS	CODE	VOLUME	UGED	ADDED IN			Turbio,		
30						3					
									1		
REMARKS:							ñ.		1		
	6.109	Sample 1	0 123	1- twb	· + 11+ + ;	WL	4.				
				0	Debusibularen DD (Dolugranulara	C = Olla	T = Tofloo: 0 =	Other (Specific)		
MATERIAL CO SAMPLING/PU	5.24.5	G = Amber Glass; P = After Peristaltic			Polyethylene; PP = { BP = Bladder Pump;	Polypropylene; ESP = Electri	S = Silicone; c Submersible F		Other (Specify) staltic Pump		
JANTLING/PU	API	- Aner Peristalli	srump, E		- Diaduor r ump,	LO. LICOUI	- 242.110.01010 1				

PRO	GRESSIVE
	ENGINEERING & CONSTRUCTIO

	ENGINEERING	3 & CONSTRU	CTION, INC.			GROUI	NDWAT	ER SAM	PLING LC	DG	
WELL NO:	MW.6		DATE:	25/14	SAMPLE ID:	N-6		PROJECT NO:	P232'	1	
SITE NAME:	(h	٦.	Tage			SITE LOCATIO	DN: 25	2 2510	S E How	- Ac	Jav-FI
					PURGIN	IG DATA					
WELL DIAMETER (in	nches): 2	TUBING DIAMETER (inc		25 feet to	NINTERVAL DEPTH:		el): 24.33	TOTAL 35 DEPTH: 😭	OR BAILER:	sub nu	-b
WELL VOLUN	AE PURGE: 1 W	ELL VOLUME =	(TOTAL WEL	L DEPTH - STAT	TIC DEPTH TO WATER;	x WELL CAP	ACITY				
(only fill out if	applicable)			= (3	✔ feet -	24.33	feet) X	0.16	gallons/foot =	1.76	gallons
INITIAL PUMF		34	FINAL PUMP	OR TUBING	34	PURGING	แเร	PURGING ENDED AT:	1133	TOTAL VOLUM	h /a
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm or ml/min)	DEPTH TO WATER (feel)	pH (standard units) (<u>+</u> 0.1 units)	COND. (μS/cm) (± 3%)	TURBIDITY (NTUs) (<u>+</u> 10%)	DISSOLVED mgn GEN saturation) (+ 10%)	TEMP ([®] C) (<u>+</u> 1 [°] C)	ORP (mV) (± 19 mV)	COLOR/ ODOR (describe)
1120	(ganons)	0.5	0.4	24.40	6.58	563	49.9	0.22	27.9	- 23.5	aun)men
1125	0.5	1.0	0.1	24.37	6.55	502	n.7	0.13	27.7	-21.6	**
1130	0.5	1.5	0.1	21.58	6.55	565	10.56	0.10	28.0	-19.0	-
1173	0.3	1.8	0.1		4.55	566	2.98	0.10	22.1	-12.3	1.
									_		
					(-		
			-						-		
		· · · · · · · · · · · · · · · · · · ·		-							
			-								
	-	-		-							
						1					
	0	1						1	1		
	-										
			1			0.27. 4" - 0.	35: 5" = 1 02·	6" = 1.47· 8"	= 2 61 10" = 4.0	8: 12" = 5.88	

WELL CAPACITY (Gallons Pe	er Foot): 0.75" = (0.02; 1" = 0.	04; 1.25" = 0.0	06; 2" = 0.16; 3" = 0	$1.37; 4^{-1} = 0.65; 5 = 1.02$, 0 - 1.47,	0 - 2.	01, 10 1.00	, 12 0.00	
SAMPLED BY (PRINT) / AFF	ILIATION:		SAMPLER(S) §	SAMPLING DATA			NT: []	54	SAMPLING ENDED AT:	NISZ
PUMP OR TUBING SAMPLE PUM			SAMPLE PUM	SAMPLE PUMP			TUBING MATERIAL CODE:			
FIELD DECONTAMINATION:			FIELD FILTER	~	FILTER SIZE:	micron	_	DUPLICATE:	Y	\sim
	AMPLE CONTAIN SPECIFICATION	ER			SAMPLE PRESERVATION					SAMPLING
SAMPLE ID CODE	# of CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL	pН		METHOD	EQUIPMENT CODE
Su coc										
REMARKS:										
MATERIAL CODES	AG = Amber Glass;	CG = Clear	Glass PF =	Polyethylene; PP = I	Polypropylene; S = Silicone;	T = Teflon;	0 = C	ther (Specify)		
In the country .	P = After Peristalli			BP = Bladder Pump;	ESP = Electric Submersible	Pump; Pf	P = Peris	taltic Pump		

PR	GRESSIVE	
	ENGINEERING & CONSTR	ПСТ

Y	ENGINEERIN	G & CONSTRUC	CTION, ING			GROU	NDWAT	ER SAMP			
VELL NO:	DW-	(DATE: Le	25 14	SAMPLE ID: DI	w-1		PROJECT NO:	P232.	1	
SITE NAME:	Cily	& Tan	n			SITE LOCATIO	^{DN:} 25	15 E Ha	men A	e Ta	MA
						G DATA		TOTAL	PURGE PUM	DTVDE	
VELL DIAMETER (in	ches) 2	TUBING DIAMETER (incl	nes): 3/8	45 leet to	NINTERVAL DEPTH:	TO WATER (fe	et): 24.67		OR BAILER:	5. 5-	1
					C DEPTH TO WATER)						-
(only fill out if										10.0	
					50 feet-	24.62	feet) X		llons/foot =	4.06	
NITIAL PUMP		47	FINAL PUMP		5	PURGING	957	PURGING ENDED AT:	1040	TOTAL VOLU PURGED (ga	63
DEPTH IN WE	LL (feet):	1	DEPTH IN W		~ /	INTIATED AT	1.11	OXYGEN	1	i ditole (ge	
	VOLUME	CUMUL. VOLUME	PURGE RATE	DEPTH TO	pН	COND.	TURBIDITY	(ng/L of %	TEMP	ORP	
TIME	PURGED (gallons)	PURGED (gallons)	(gpm or ml/min)	WATER (feet)	(standard units) (± 0.1 units)	(μS/cm) (± 3%)	(NTUs) (± 10%)	(+ 10%)	([°] C) (<u>+</u> 1 [°] C)	(mV) (<u>+</u> 19 mV)	COLOR/ ODO (describe)
1002	0.5	0.5		No.							
1007	0.5	1.0	0.1	21.74	6.98	368.2	18.3	0.30	27.1	5.3	non Jun
1012	0.5	1.5	0.1	27.97	6.90	367.4	14.9	0.22	27.1	6.9	
1017	0.5	2.0	0-1	-	6.25	367.2	6.73	0.16	24.4	3.6	•
1022	0.5	2.5	0.1	28.40	0.25	365.1	\$20	0.16	26.8	2.6	*
1027	0.5	3.0	0.1	28.46	6.26	365.5	7.91	0.19	26.9	0.4	54
1032	0.5	3.5	0.1	28.45	6.36	362.2	10.21	0.21	26.7	-1.0	**
1037	0.5	4.0	0.1	28.45	6.85	351.8	5.97	0.23	26.8	-0.9	•
1040	0.3	4.3	6.1	22.45	6.90	356.2	8.49	0.25	26.9	-1.9	Ŀ
10.00											
				L(46 19			
								· · · · · · · · · · · · · · · · · · ·			
								·	-	-	-
								011 - 4 47 011 - 4	101- 107-10	0. 40% = 5.00	
WELL CAPAC	ITY (Gallons Pe	er Foot): 0.75" =	0.02; 1" = 0.	$04; 1.25^n = 0$	06; 2" = 0.16; 3" =	NG DATA	55; 5" = 1.02;	6 ["] = 1.47; 8 ["] = 4		6, 12 - 5.00	
SAMPLED BY	(PRINT) / AFFI	LIATION:		SAMPLER(S)		NO DATA		SAMPLING		SAMPLING	a de F
	CINA	hels			Ir				010	ENDED AT:	1045
PUMP OR TU		14.7		SAMPLE PUM	PUMP			TUBING MATERIAL CODE:			
DEPTH IN WE	LL (feet):	7]		FLOW RATE (mL per minute): ED: Y (N)		ER SIZE:	micron			1727
	TAMINATION:	(Y) N		Filtration Equip					DUPLICATE:	Y	N
223 22001		AMPLE CONTAIN	ER								
		SPECIFICATION				SAMPLE PRE			-		SAMPLING
CAMPLE	ID CODE	# of CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE		L VOL FIELD (mL)	FINAL pH		D ANALYSIS R METHOD	EQUIPMENT CODE
SAMPLE	(OL		0000	- OLOWIC				-			
REMARKS:		4									
MATERIAL CO	DDES: A	G = Amber Glass;	CG = Clear	Glass; PE =	Polyethylene; PP = I	Polypropylene;			Other (Specify)		
AMPLING/PU	JRGING API	P = After Peristaltion	c Pump; E	3 = Bailer;	BP = Bladder Pump;	ESP = Electri	c Submersible F	oump; PP = Peri	staltic Pump		

	2
PR	GRESSIVE
	ENGINEERING & CONSTRUCTION

E	NGINEERING	G & CONSTRUC	CTION, INC.			GROUN	DWAT	ER SAM	PLING LC	DG	
ELL NO:	MWN	0	DATE:	25.14	SAMPLE ID:	N-7		PROJECT NO:	P232	1	
TE NAME:	(.)	h of 7	Tamen			SITE LOCATIO	N: 251	SEI	Hanna A	And the second	yon FL
-		1.00	- 4-			IG DATA		280 H.W			4
ELL	hes): 2"	TUBING	bes): 3 8		NINTERVAL DEPTH:	STATIC DEPTH	22 22	TOTAL DEPTH: 3	S PURGE PUM	SJD.	
AMETER (incl	hes): C	DIAMETER (incl	TOTAL WELL	25 feet to	35 feet IC DEPTH TO WATER)	x WELL CAPA	CITY	DEPTICA	- ON DAILER.	204.	
nly fill out if ap		ELL VOLUME -		DEI III- GIA		X MELL ON T				A .	
				= (3	5 feet-	23.73	feet) X	0.16	gallons/foot =	1. 20	Jal gallons
TIAL PUMP C	OR TUBING		FINAL PUMP	OR TUBING	ALL 80	PURGING	4.57.	PURGING	011	TOTAL VOLU	2 1
PTH IN WEL	L (feet):	34	DEPTH IN W	ELL (feet):	34	INITIATED AT:	852A	ENDED AT: DISSOLVED	911	PURGED (gal	ions): 2.1
	VOLUME PURGED	CUMUL. VOLUME PURGED		DEPTH TO WATER	pH (standard units)	COND. (μS/cm)	TURBIDITY (NTUs)	oxyGEN mg) or % saturation)	TEMP (°C)	ORP (mV) (<u>+</u> 19 mV)	COLOR/ ODOF
TIME	(gallons)	(gallons)	ml/min)	(feet)	(<u>+</u> 0.1 units)	(± 3%) 308-1	(± 10%)	(<u>+</u> 10%) u.52	(±1°C) . 26.3	-6.1	(describe)
855	0.5	0.5	0.1	24.59	4.99		31.5	1		-	une in
900	0.5	1.0	0.1	-	. 00	24. 4		-		-0.6	
905	0.5	1.5	0.1	24.98	6.97	306.0	13.0	0.26	26.3	2.1	
908	•.3	1.8	0.1	24.95	6.96	307.0	9.02		24.6	16.0	
111	0.3	2.1	0.1	24.70	6.97	307.8	7.21	0.60	24.00	10.0	005-1
							-			-	
						-			_		
					_					-	
									_		
						1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -			_	8	
									_		
									_		
									_	-	
									_		
				· · · · · · · · · · · ·							
ELL CAPACIT	ry (Gallons Pe	r Foot): 0.75" = 6	0.02; 1" = 0.	04; 1.25" = 0.	06; 2" = 0.16; 3" = 0		5; 5" = 1.02;	6" = 1.47; 8"	= 2.61; 10" =4.08	3; 12" = 5.88	
MPLED BY (PRINT) / AFFIL	ATION:		SAMPLER(S)	SAMPLIN SIGNATURES:	NG DATA		SAMPLING	05	SAMPLING	e
	6	ATION:		or unit car ((o)		1		INITIATED AT:	912	ENDED AT:	F 922
IMP OR TUBI				SAMPLE PUM	P	V		TUBING	0-		
PTH IN WEL	L (feet):	34			mL per minute):	4100		MATERIAL COD	e: PE		
		~		FIELD FILTER	N 10. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FILTE	r size: 0. 4	micron	OUD LOATE	122	0
ELD DECONT			FR	Filtration Equip	aicsin Type,				DUPLICATE;	Y	
		SPECIFICATION				SAMPLE PRES	ERVATION				04401440
		# of	MATERIAL		PRESERVATIVE	TOTAL			INTENDED	ANALYSIS	SAMPLING EQUIPMENT
SAMPLE II		CONTAINERS	CODE	VOLUME	USED	ADDED IN F	IELD (mL)	FINAL p	H AND/OR	METHOD	CODE
su	101										
								1			
			-								
MARKS:											
TERIAL COD	DES: AC	G = Amber Glass;	a disease -	V		olypropylene;			= Other (Specify)		
	RGING APP	= After Peristaltic	Pump: E	B = Bailer;	BP = Bladder Pump;	ESP = Electric	Submersible P	ump; PP = Po	eristaltic Pump		

PROGRESSIVE ENGINEERING & CONSTRUCTION

ENGINÉERING & CONSTRUCTION, INC.						GROUNDWATER SAMPLING LOG					
WELL NO:	EW-1		DATE:	25 14	SAMPLE ID:	W-1		PROJECT NO:	P2324	1	
ITE NAME:	Ch	1 1	-			SITE LOCATIO	IN: 2515	E Han	ma Ac	Tayper	-PL
	0.1		- de		PURGIN	G DATA					
VELL		TUBING	31.			STATIC DEPT		TOTAL	PURGE PUM		
NAMETER (in		DIAMETER (inc	hes):	feet to	feet IC DEPTH TO WATER)	TO WATER (fe		DEPTH: 31	OR BAILER:	r	
only fill out if a			(IOTAL WELL	DEFINISIA	IC DEPTITIO WATER	X WELL ON /	- Contra				
()	, ,			= (12	90 feet-	2.71	feet) X	0-16 ga	illons/foot =	1.63	gallon
NITIAL PUMP	OR TUBING	VAN	FINAL PUMP	OR TUBING		PURGING	1774	PURGING	1344	TOTAL VOLU	
DEPTH IN WE	LL (feet):	12	DEPTH IN WI	ELL (feet):	12	INITIATED AT:	1327	ENDED AT: UISSOLVED	1311	PURGED (gall	ons): 1.75
	VOLUME	CUMUL. VOLUME	PURGE RATE	DEPTH TO	рН	COND.	TURBIDITY	OXYGEN or %	TEMP	ORP	
	PURGED	PURGED	(gpm or	WATER	(standard units)	(µS/cm)	(NTUs)	Saturation)	(°C)	(mV)	COLOR/ ODO
TIME	(gallons)	(gallons)	ml/min)	(feet)	(<u>+</u> 0.1 units)	(<u>+</u> 3%)	(<u>+</u> 10%)	(± 10%)	(<u>+</u> 1 °C)	(<u>+</u> 19 mV)	(describe)
1327	0.25	0.25	0.1	2.29	5.87	157.8	52.2	1.10	289	44.5	non/we
,330	0.25	0.50	0.1	7.90	5.68	153.7	48.8	1.46	28.9	43.6	00.8
1333	0.25	0.75	0-1	2.90	5.59	154.9	30.9	1.57	28.9	39.3	- 14 - 14
1336	0.25	4.0	U	2.90	5.40	156.6	20,2	1.56	22.9	42.6	
1359	0.25	1.25	0.1	2.90	5.61	157.8	18.3	1.55	28.9	41.3	v
1342	0-25	1.50	0.1	2.90	5.60	158.1	10.6	1.56	28.9	42.2	~
1211	0.25	1.75	0.	2.10	3.31	15 0.1	10.0	1.30	20.1	1.0.6	(ett)
_											
							8				
										1	
_					· · · · · · · · · · · · · · · · · · ·						
]		
WELL CAPAC	ITY (Gallons Pe	r Foot): 0.75" =	0.02; 1 " = 0.	04; 1.25" = 0.	06; 2 " = 0.16; 3 " =		5; 5" = 1.02;	6" = 1.47; 8"= 2	2.61; 10" =4.08	3; 12'' = 5.88	
				SAMPLER(S)		NG DATA		SAMPLING		SAMPLING	
SAMPLED BY	(PRINT) / AFFIL	chuls		SAMPLER(S)	SIGNATORES.	1		INITIATED AT:	,347	ENDED AT:	1349
PUMP OR TUE				SAMPLE PUM	Р (9		TUBING	1.42		
DEPTH IN WE		12		FLOW RATE (I		Liou		MATERIAL CODE:	pc		
		C .		FIELD FILTER	\sim	FILTE	R SIZE:	micron	DUDUDATE	0	N
FIELD DECON	TAMINATION:	(Y) N MPLE CONTAINI	ER	Filtration Equip					DUPLICATE:	Y	0
		SPECIFICATION				SAMPLE PRE	SERVATION				SAMPLING
		# of	MATERIAL		PRESERVATIVE	τοτα		42-AMONO11 Adv-42		ANALYSIS	EQUIPMENT
17.55	ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN	FIELD (mL)	FINAL pH	AND/OR	METHOD	CODE
Su	Col					_			-		
										_	
REMARKS:											
ATERIAL CO	DES: A	G = Amber Glass;	CG = Clear	Glass; PE =	Polyethylene; PP = F	olypropylene;	S = Silicone;	T = Teflon; O = 0	Other (Specify)		
	31 /19/	= After Peristaltio	 The state state 	1493011	BP = Bladder Pump;	ESP = Electric	Submersible P	ump; PP = Peri	staltic Pump		

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

ATTACHMENT D

Laboratory Analytical Reports

G:\PROJECTS\Tampa - East Hanna Avenue\Reports\Report_East Hanna Ave.docx

2251 Lynx Lane, Suite 1 Orlando, Florida 32804 (407) 522-7100 Fax (407) 522-7043 Toll Free 1 (888) 420-Test

Thank you **Ms. Bridget Morello** for the opportunity to be of service to you and your company; we Sincerely Appreciate Your Business. SRL certifies these Laboratory Results were produced in accordance with NELAC Standards. Hold times and preservation requirements were met for all analytes unless specifically noted in the report. Results relate only to the samples as received.

Client Name: P	rogressive Eng. & Con	struction, Inc.	Date(s) Collected: 06/25-06/26/14
Contact Name:	Bridget Morello		Date Received: 06/27/14
Project Name: 0	City of Tampa		Time Received: 14:10
Project Number:	P9000		Date Reported : 07/08/14
Phone Number:	(813) 930-0669		Date Emailed : 07/08/14
Fax Number: (8	313) 930-9809		SRL Work Order # 14-06032
			R1 071714
SRL WO #	Clients #	Matrix	Analysis Requested
1406032-001 1406032-002	DW-2 SW-1	Liquid Liquid	EPA 8260(VOC)/8260-SIM(1,4-Dioxane) * EPA 8260(VOC)/Ethylene glycol/
			Aluminum/Antimony/Arsenic /Barium/ Boron/Cadmium /Chromium/Lead/ Copper/Selenium /Sodium/Tin/ Mercury
1406032-003	MW-8	Liquid	* EPA 8260(VOC)/8260-SIM(1,4-Dioxane) Ethylene glycol/Aluminum/Antimony/ Arsenic /Barium/Boron/Cadmium/ Chromium/Lead/Copper/Selenium/ Sodium/Tin/Mercury/Flouride/SVOCs
1406032-004	EW-2	Liquid	EPA 8260(VOC)
1406032-005	EW-1	Liquid	EPA 8260(VOC)
1406032-006	MW-5	Liquid	* EPA 8260(VOC)/8260-SIM(1,4-Dioxane) Ethylene glycol/Aluminum/Antimony/ Arsenic /Barium/Boron/Cadmium/ Chromium/Lead/Copper/Selenium/ Sodium/Tin/Mercury/Flouride/SVOCs
1406032-007	Trip Blank	Liquid	EPA 8260(VOC)/8260-SIM(1,4-Dioxane)

Nonconformance: This report is an amendment to the original report dated June 08, 2014 for this work order. Additional Information: The samples listed above (*) were originally on hold per client request. After the fin report was issued, the client requested dissolved Aluminum analysis of these samples. The results are included in this revised report.

Affected Samples: SW-1 [1406032-002], MW-8 [1406032-003], MW-5 [1406032-006]

Sherri Payne

Vice President & Quality Assurance Officer

Southern Research Laboratories, Inc.

Southern Research Laboratorie	s, Inc.	NELAP Certified			
an MBE Environmental Laborat	tory	FDOH Cert # : E83484			
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032			
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14			
Bridget Morello		Project Number/Project Name			
Progressive Engineering & Cons	struction, Inc.	P9000			
3912 West Humphrey Street		City Of Tampa			
Tampa, Florida 33614	(813) 930-0669	Tampa, FL			

EPA Method 8260B 1,4-Dioxane in Water by GC-MS

Method 8260 Purge and Trap using Gas Chromatography/Mass Spectrometry and Selective Ion Monitoring (SIM)

Client ID #	: DW-2	MW-8	MW-5	Trip Blank			
SRL (Lab) ID#	: 1406032-001	1406032-003	1406032-006	1406032-00	7		
Date Collected	: 06/26/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/03/14	07/03/14	07/03/14	07/03/14			
Date Analyzed	: 07/03/14	07/03/14	07/03/14	07/03/14	MDL	PQL	CAS Number
1,4-Dioxane	1.6	0.5 U	7.0	0.5 U	0.5	1.0	123-91-1
Units	: ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 1	1	1	1	1	1	
Surrogate (% Rec)	:			(Surrogat	e Contro	l Limits)
Dioxane-d8	109.3%	112.9%	117.3%	103.1%		70-130	

Client ID #	: Method Blank			
SRL (Lab) ID#	: MB070314			
Date Collected	: NA			
Lab FDOH Certification #	: E83484			
Date Prepared	: 07/03/14			
Date Analyzed	: 07/03/14	MDL	PQL	CAS Number
1,4-Dioxane	0.5 U	0.5	1.0	123-91-1
Units	: ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 1	1	1	
Surrogate (% Rec)	:	(Surrogat	te Contro	l Limits)
Dioxane-d8	100.0%		70-130	

% Recovery	Acceptable	%RPD	Acceptable
LCS/MS/MSD	Limits	MS/MSD	Limits
97/93/106	70-130	11	0-30

1,4-Dioxane

Southern Research Laborat	ories, Inc.	NELAP Certified		
an MBE Environmental Labo	pratory	FDOH Cert # : E83484		
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032		
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14		
Bridget Morello		Project Number/Project Name		
Progressive Engineering & C	Construction, Inc.	P9000		
3912 West Humphrey Street		City Of Tampa		
Tampa, Florida 33614	(813) 930-0669	Tampa, FL		

EPA Method 5030/8260B Volatile Organics in Water by GC-MS

Client ID #	: DW-2	SW-1	MW-8	EW-2			
SRL (Lab) ID#	: 1406032-001	1406032-002	1406032-003	1406032-004			
Date Collected	: 06/26/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/01/14	07/01/14	07/01/14	07/01/14			
Units	: ug/L	ug/L	ug/L	ug/L	MDL	PQL	CAS Number
Dichlorodifluoromethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	75-71-8
Chloromethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	74-87-3
Vinyl Chloride	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-01-4
Bromomethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	74-83-9
Chloroethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	75-00-3
Trichlorofluoromethane	2.0 U	2.0 U	2.0 U	2.0 U	1.0	2.0	75-69-4
1,1-Dichloroethene	0.6 I	1.0 U	1.0 U	1.0 U	0.2	1.0	75-35-4
Methylene Chloride	5.0 U	5.0 U	5.0 U	5.0 U	2.0	5.0	75-09-02
Trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	156-60-5
Acetone	50 U	50 U	50 U	50 U	25	50	67-64-1
Methyl tert-Butyl Ether	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	1634-04-4
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-34-3
Cis-1,2-Dichloroethene	25	1.0 U	1.0 U	1.0 U	0.2	1.0	156-59-2
2,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	590-20-7
Bromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	74-97-5
Chloroform	1.0	1.0 U	1.0 U	1.0 U	0.2	1.0	67-66-3
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	0.8	1.0	56-23-5
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	71-55-6
1,1-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	563-58-6
2-Butanone (MEK)	10 U	10 U	10 U	10 U	5.0	10	78-93-3
Benzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	71-43-2
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	107-06-2
Trichloroethene	70	0.2 I	2.7	1.0 U	0.2	1.0	79-01-6
Dibromomethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	74-95-3
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	78-87-5
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	75-27-4
Cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-01-5
Toluene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	108-88-3
Tetrachloroethene	310 D10	0.7 I	2.8	1.0 U	0.2	1.0	127-18-4
4-Methyl-2-Pentanone (MIBK)	10 U	10 U	10 U	10 U	5.0	10	108-10-1
Trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-02-6
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	79-00-5
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	124-48-1
1,3-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	142-28-9
1,2-Dibromoethane (EDB)	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	106-93-4
2-Hexanone (MBK)	10 U	10 U	10 U	10 U	5.0	10	591-78-6
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	108-90-7
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	100-41-4
1,1,1,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	630-20-6
m- & p-Xylene	2.0 U	2.0 U	2.0 U	2.0 U	1.0	2.0	108-38-3/106-42-3
o-Xylene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	95-47-6

Southern Research Laborator	ries, Inc.	NELAP Certified
an MBE Environmental Labor	ratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & Co	onstruction, Inc.	P9000
2012 W H		Citar Of Termer
3912 West Humphrey Street		City Of Tampa

EPA Method 5030/8260B Volatile Organics in Water by GC-MS (cont)

Client ID #	: DW-2	SW-1	MW-8	EW-2			
SRL (Lab) ID#	: 1406032-001	1406032-002	1406032-003	1406032-0	004		
Date Collected	: 06/26/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/01/14	07/01/14	07/01/14	07/01/14	MDL	PQL	CAS Number
Styrene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	100-42-5
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-25-2
Isopropylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	98-82-8
Bromobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	108-86-1
n-Propylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.4	1.0	103-65-1
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	79-34-5
2-Chlorotoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	95-49-8
1,2,3-Trichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	96-18-4
1,3,5-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	108-67-8
4-Chlorotoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	106-43-4
tert-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	98-06-6
1,2,4-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	95-63-6
sec-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	135-98-8
p-Isopropyltoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	99-87-6
1,3-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	541-73-1
1,4-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	106-46-7
n-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	104-51-8
1,2-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	95-50-1
1,2-Dibromo-3-Chloropropane	3.0 U	3.0 U	3.0 U	3.0 U	1.0	3.0	96-12-8
1,2,4-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	120-82-1
Hexachlorobutadiene	3.0 U	3.0 U	3.0 U	3.0 U	2.0	3.0	87-68-3
Naphthalene	5.0 U	5.0 U	5.0 U	5.0 U	2.0	5.0	91-20-3
1,2,3-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	87-61-6
Units	: ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 1	1	1	1	1	1	
Surrogate (% Rec)	:				(Surrogat	e Control	l Limits)
Dibromofluoromethane	99.2%	99.3%	101.1%	98.1%		70-130	
1-2-Dichloroethane-d4	110.2%	105.2%	104.6%	105.3%		70-130	
Toluene-D8	89.0%	90.0%	90.3%	92.8%		70-130	
4-Bromofluorobenzene	92.3%	101.4%	96.1%	96.2%		70-130	

Southern Research Laborate	pries, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	Construction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS

Client ID #	: EW-1	MW-5	Trip Blank			
SRL (Lab) ID#	: 1406032-005	1406032-006	1406032-007			
Date Collected	: 06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/01/14	07/01/14	07/01/14			
Units	: ug/L	ug/L	ug/L	MDL	PQL	CAS Number
Dichlorodifluoromethane	2.0 U	2.0 U	2.0 U	0.5	2.0	75-71-8
Chloromethane	2.0 U	2.0 U	2.0 U	0.5	2.0	74-87-3
Vinyl Chloride	1.0 U	1.0 U	1.0 U	0.2	1.0	75-01-4
Bromomethane	2.0 U	2.0 U	2.0 U	0.5	2.0	74-83-9
Chloroethane	2.0 U	2.0 U	2.0 U	0.5	2.0	75-00-3
Trichlorofluoromethane	2.0 U	2.0 U	2.0 U	1.0	2.0	75-69-4
1,1-Dichloroethene	1.0 U	2.8	1.0 U	0.2	1.0	75-35-4
Methylene Chloride	5.0 U	5.0 U	* 28	2.0	5.0	75-09-02
Trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	0.2	1.0	156-60-5
Acetone	50 U	50 U	50 U	25	50	67-64-1
Methyl tert-Butyl Ether	1.0 U	1.0 U	1.0 U	0.2	1.0	1634-04-4
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	75-34-3
Cis-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	0.2	1.0	156-59-2
2,2-Dichloropropane	1.0 U	1.0 U	1.0 U	0.2	1.0	590-20-7
Bromochloromethane	1.0 U	1.0 U	1.0 U	0.5	1.0	74-97-5
Chloroform	1.0 U	1.3	1.0 U	0.2	1.0	67-66-3
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	0.8	1.0	56-23-5
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	71-55-6
1,1-Dichloropropene	1.0 U	1.0 U	1.0 U	0.2	1.0	563-58-6
2-Butanone (MEK)	10 U	25	10 U	5.0	10	78-93-3
Benzene	1.0 U	0.5 I	1.0 U	0.5	1.0	71-43-2
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	107-06-2
Trichloroethene	1.0 U	0.2 I	1.0 U	0.2	1.0	79-01-6
Dibromomethane	1.0 U	1.0 U	1.0 U	0.2	1.0	74-95-3
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	0.2	1.0	78-87-5
Bromodichloromethane	1.0 U	0.3 I	1.0 U	0.5	1.0	75-27-4
Cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-01-5
Toluene	1.0 U	1.0 U	1.0 U	0.5	1.0	108-88-3
Tetrachloroethene	1.0 U	1.0 U	1.0 U	0.2	1.0	127-18-4
4-Methyl-2-Pentanone (MIBK)	10 U	10 U	10 U	5.0	10	108-10-1
Trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-02-6
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	79-00-5
Dibromochloromethane	1.0 U	0.3 I	1.0 U	0.2	1.0	124-48-1
1,3-Dichloropropane	1.0 U	1.0 U	1.0 U	0.2	1.0	142-28-9
1,2-Dibromoethane (EDB)	1.0 U	1.0 U	1.0 U	0.1	1.0	106-93-4
2-Hexanone (MBK)	10 U	10 U	10 U	5.0	10	591-78-6
Chlorobenzene	1.0 U	1.0 U	1.0 U	0.2	1.0	108-90-7
Ethylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	100-41-4
1,1,1,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	630-20-6
m- & p-Xylene	2.0 U	2.0 U	2.0 U	1.0	2.0	108-38-3/106-42-3
o-Xylene	1.0 U	1.0 U	1.0 U	0.5	1.0	95-47-6

* Common Laboratory Contaminant

Southern Research Laborate	pries, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	Construction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS (cont)

Client ID #	: EW-1	MW-5	Trip Blank			
SRL (Lab) ID#	: 1406032-005	1406032-006	1406032-007			
Date Collected	: 06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/01/14	07/01/14	07/01/14	MDL	PQL	CAS Number
Styrene	1.0 U	1.0 U	1.0 U	0.2	1.0	100-42-5
Bromoform	1.0 U	1.0 U	1.0 U	0.2	1.0	75-25-2
Isopropylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	98-82-8
Bromobenzene	1.0 U	1.0 U	1.0 U	0.2	1.0	108-86-1
n-Propylbenzene	1.0 U	1.0 U	1.0 U	0.4	1.0	103-65-1
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	0.2	1.0	79-34-5
2-Chlorotoluene	1.0 U	1.0 U	1.0 U	0.2	1.0	95-49-8
1,2,3-Trichloropropane	1.0 U	1.0 U	1.0 U	0.2	1.0	96-18-4
1,3,5-Trimethylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	108-67-8
4-Chlorotoluene	1.0 U	1.0 U	1.0 U	0.2	1.0	106-43-4
tert-Butylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	98-06-6
1,2,4-Trimethylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	95-63-6
sec-Butylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	135-98-8
p-Isopropyltoluene	1.0 U	1.0 U	1.0 U	0.2	1.0	99-87-6
1,3-Dichlorobenzene	1.0 U	1.0 U	1.0 U	0.1	1.0	541-73-1
1,4-Dichlorobenzene	1.0 U	1.0 U	1.0 U	0.1	1.0	106-46-7
n-Butylbenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	104-51-8
1,2-Dichlorobenzene	1.0 U	1.0 U	1.0 U	0.1	1.0	95-50-1
1,2-Dibromo-3-Chloropropane	3.0 U	3.0 U	3.0 U	1.0	3.0	96-12-8
1,2,4-Trichlorobenzene	1.0 U	1.0 U	1.0 U	0.2	1.0	120-82-1
Hexachlorobutadiene	3.0 U	3.0 U	3.0 U	2.0	3.0	87-68-3
Naphthalene	5.0 U	5.0 U	5.0 U	2.0	5.0	91-20-3
1,2,3-Trichlorobenzene	1.0 U	1.0 U	1.0 U	0.5	1.0	87-61-6
Units	: ug/L	ug/L	ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 1	1	1	1	1	
Surrogate (% Rec)	:			(Surrogat	e Control	l Limits)
Dibromofluoromethane	99.9%	100.3%	102.8%		70-130	
1-2-Dichloroethane-d4	105.9%	108.6%	109.4%		70-130	
Toluene-D8	90.8%	88.7%	93.1%		70-130	
4-Bromofluorobenzene	96.8%	97.8%	96.6%		70-130	

Southern Research Laborate	pries, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	Construction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA 8015C Non-Halogenated Semivolatile Organics by GC

Client ID #	: SW-1	MW-8	MW-5	Method Bl	ank		
SRL (Lab) ID#	: 1406032-002	1406032-003	1406032-006	MB070814			
Date Collected	: 06/25/14	06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E82277	E82277	E82277	E82277			
Date Prepared	: 07/08/14	07/08/14	07/08/14	07/08/14			
Date Analyzed	: 07/08/14	07/08/14	07/08/14	07/08/14	MDL	PQL	CAS Number
Ethylene Glycol	8.7 U	8.7 U	8.7 U	8.7 U	8.7	10	107-21-1
Units	: mg/L	mg/L	mg/L	mg/L			
Dilution Factor (MEDF)	: 1	1	1	1			
Surrogate (% Rec)	:				(Surrogat	e Contro	l Limits)
1,3-Butylene Glycol	101.0%	103.0%	100.0%	105.0%		50-150	

		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: No Prep	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Ethylene Glycol	94/91/89	70-130	70-130	3	0-25

EPA 300.0 Classical Chemistry Parameters

Client ID #	:	MW-8	MW-5	Method Blan	ık		
SRL (Lab) ID#	:	1406032-003	1406032-006	MB063014			
Date Collected	:	06/25/14	06/25/14	NA			
Lab FDOH Certification #	:	E83182	E83182	E83182			
Date Prepared	:	06/30/14	06/30/14	06/30/14			
Date Analyzed	:	06/30/14	06/30/14	06/30/14	MDL	PQL	CAS Number
Fluoride		0.51	0.28	0.02 U	0.02	0.20	16984-48-8
Units	:	mg/L	mg/L	mg/L			
Dilution Factor (MEDF)	:	1	1	1			

		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: No Prep	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Fluoride	101/*83/*85	90-110	90-110	2	0-10

 \ast The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Southern Research Laborate	pries, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032
Orlando, Florida 32804 (407) 522-7100		Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	onstruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

Client ID #	: MW-8	MW-5	Method Blank			
SRL (Lab) ID#	: 1406032-003		MB062914			
Date Collected	: 06/25/14	06/25/14	NA NA			
Lab FDOH Certification #	: E83182	E83182	E83182			
Date Prepared	: 06/29/14	06/29/14	06/29/14			
Date Analyzed	: 07/07/14	07/07/14	07/07/14	MDL	PQL	CAS Number
1,2,4-Trichlorobenzene	3.3 U	3.3 U	3.3 U	3.3	10	120-82-1
1,2-Dichlorobenzene	3.2 U	3.2 U	3.2 U	3.2	10	95-50-1
1,3-Dichlorobenzene	3.4 U	3.4 U	3.4 U	3.4	10	541-73-1
1,4-Dichlorobenzene	3.2 U	3.2 U	3.2 U	3.2	10	106-46-7
1-Methylnaphthalene	3.1 U	3.1 U	3.1 U	3.1	10	90-12-0
2,4,5-Trichlorophenol	3.9 U	3.9 U	3.9 U	3.9	10	95-95-4
2,4,6-Trichlorophenol	6.4 U	6.4 U	6.4 U	6.4	10	88-06-2
2,4-Dichlorophenol	6.5 U	6.5 U	6.5 U	6.5	10	120-83-2
2,4-Dimethylphenol	^ 6.4 U	^ 6.4 U	6.4 U	6.4	10	105-67-9
2,4-Dinitrophenol	7.7 U	7.7 U	7.7 U	7.7	10	51-28-5
2,4-Dinitrotoluene	3.2 U	3.2 U	3.2 U	3.2	10	121-14-2
2,6-Dinitrotoluene	2.9 U	2.9 U	2.9 U	2.9	10	606-20-2
2-Chloronaphthalene	3.2 U	3.2 U	3.2 U	3.2	10	91-58-7
2-Chlorophenol	^ 7.4 U	^ 7.4 U	7.4 U	7.4	10	95-57-8
2-Methyl-4,6-dinitrophenol	6.0 U	6.0 U	6.0 U	6.0	10	534-52-1
2-Methylnaphthalene	3.8 U	3.8 U	3.8 U	3.8	10	91-57-6
2-Methylphenol	3.5 U	3.5 U	3.5 U	3.5	10	95-48-7
2-Nitroaniline	3.3 U	3.3 U	3.3 U	3.3	10	88-74-4
2-Nitrophenol	5.2 U	5.2 U	5.2 U	5.2	10	88-75-5
3 & 4-Methylphenol	8.2 U	8.2 U	8.2 U	8.2	10	108-39-4/106-44-5
3,3'-Dichlorobenzidine	^ 3.3 U	^ 3.3 U	3.3 U	3.3	10	91-94-1
3-Nitroaniline	3.3 U	3.3 U	3.3 U	3.3	10	99-09-2
4-Bromophenyl-phenylether	3.3 U	3.3 U	3.3 U	3.3	10	101-55-3
4-Chloro-3-methylphenol	7.3 U	7.3 U	7.3 U	7.3	10	59-50-7
4-Chloroaniline	4.3 U	4.3 U	4.3 U	4.3	10	106-47-8
4-Chlorophenyl-phenylether	3.2 U	3.2 U	3.2 U	3.2	10	7005-72-3
4-Nitroaniline	3.2 U	3.2 U	3.2 U	3.2	10	100-01-6
4-Nitrophenol	7.9 U	7.9 U	7.9 U	7.9	10	100-02-7
Acenaphthene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	83-32-9
Acenaphthylene	3.3 U	3.3 U	3.3 U	3.3	10	208-96-8
Anthracene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	120-12-7
Benzidine	7.1 U	7.1 U	7.1 U	7.1	10	92-87-5
Benzo(a)anthracene	^ 3.2 U	^ 3.2 U	3.2 U	3.2	10	56-55-3
Benzo(a)pyrene	3.1 U	3.1 U	3.1 U	3.1	10	50-32-8
Benzo(b)fluoranthene	3.4 U	3.4 U	3.4 U	3.4	10	205-99-2
Benzo(g,h,i)perylene	3.7 U	3.7 U	3.7 U	3.7	10	191-24-2
Benzo(k)fluoranthene	3.3 U	3.3 U	3.3 U	3.3	10	207-08-9
Benzoic acid	15 U	15 U	15 U	15	50	65-85-0
Benzyl alcohol	3.9 U	3.9 U	3.9 U	3.9	10	100-51-6
Bis(2-chloroethoxy)methane	^ 3.3 U	^ 3.3 U	3.3 U	3.3	10	111-91-1
Bis(2-chloroethyl)ether	^ 3.8 U	^ 3.8 U	3.8 U	3.8	10	111-44-4

Southern Research Laborato	ries, Inc.	NELAP Certified
an MBE Environmental Labo	ratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032
Orlando, Florida 32804 (407) 522-7100		Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & Co	onstruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

Client ID #	: MW-8	MW-5	Method Blank			
SRL (Lab) ID#	: 1406032-003		MB062914			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E83182	E83182	E83182			
Date Prepared	: 06/29/14	06/29/14	06/29/14			
Date Analyzed	: 07/07/14	07/07/14	07/07/14	MDL	PQL	CAS Number
Bis(2-chloroisopropyl)ether	3.5 U	3.5 U	3.5 U	3.5	10	108-60-1
Bis(2-ethylhexyl)phthalate	3.5 U	3.5 U	3.5 U	3.5	5.0	117-81-7
Butylbenzylphthalate	^ 5.1 U	^ 5.1 U	5.1 U	5.1	10	85-68-7
Chrysene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	218-01-9
Dibenzo(a,h)anthracene	3.8 U	3.8 U	3.8 U	3.8	10	53-70-3
Dibenzofuran	2.8 U	2.8 U	2.8 U	2.8	10	132-64-9
Diethylphthalate	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	84-66-2
Dimethylphthalate	3.0 U	3.0 U	3.0 U	3.0	10	131-11-3
Di-n-butylphthalate	^ 3.2 U	^ 3.2 U	3.0 U	3.0	10	84-74-2
Di-n-octylphthalate	^ 3.6 U	^ 3.6 U	3.6 U	3.6	10	117-84-0
Fluoranthene	^ 4.0 U	^ 4.0 U	4.0 U	4.0	10	206-44-0
Fluorene	4.0 U 2.9 U	4.0 U	4.0 U	4.0 2.9	10	86-73-7
Hexachlorobenzene	3.0 U	2.9 U 3.0 U	3.0 U	3.0	10	118-74-1
Hexachlorobutadiene	4.1 U	4.1 U	4.1 U	5.0 4.1	10	87-68-3
Hexachlorocyclopentadiene	3.8 U	3.8 U	4.1 U 3.8 U	3.8	10	77-47-4
Hexachloroethane	3.0 U	3.0 U	3.0 U	3.0	10	67-72-1
Indeno(1,2,3-cd)pyrene	3.0 U 4.1 U	4.1 U	4.1 U	3.0 4.1	10	193-39-5
Isophorone	4.1 U 4.5 U	4.1 U 4.5 U	4.1 U 4.5 U	4.1	10	78-59-1
Naphthalene	4.5 U	4.5 U	4.5 U 3.6 U	4. <i>5</i> 3.6	10	91-20-3
Nitrobenzene	3.0 U 3.2 U	3.0 U 3.2 U	3.0 U 3.2 U	3.0	10	98-95-3
N-Nitrosodimethylamine	3.2 U 3.8 U	3.2 U 3.8 U	3.2 U 3.8 U	3.2 3.8	10	62-75-9
N-Nitroso-di-n-propylamine	4.5 U	4.5 U	4.5 U	3.8 4.5	10	621-64-7
N-nitrosodiphenylamine/Diphenylamine	4.5 U 5.4 U	4.5 U 5.4 U	4.5 U	4. <i>3</i> 5.4	10	86-30-6/122-39-4
Pentachlorophenol	^ 8.2 U	^ 8.2 U	8.2 U	5.4 8.2	10	87-86-5
Phenanthrene	^ 2.8 U	^ 2.8 U	2.8 U	2.8	10	85-01-8
Phenol	5.6 U	5.6 U	5.6 U	2.8 5.6	10	108-95-2
Pyrene	^ 4.1 U	^ 4.1 U	4.1 U	5.0 4.1	10	129-00-0
Pyridine	3.5 U	3.5 U	3.5 U	3.5	10	110-86-1
Units	ug/L	ug/L	ug/L	5.5	10	110-00-1
Dilution Factor (MEDF)	1	1	1			
Surrogate (% Rec)	:	1	1	(Surrogat	e Cont	rol Limits)
2,4,6-Tribromophenol	• 91%	123%	78%	(Bullogat	47-128	
2-Fluorobiphenyl	75%	90%	77%		44-102	
2-Fluorophenol	49%	65%	46%		25-79	
Nitrobenzene-d5	70%	92%	77%		43-112	
Phenol-d5	38%	50%	32%		14-54	
Terphenyl-d14	122%		* 135%		65-122	
i orphonyi-ui+	1 22 /0	12070	1.55/0		55-122	-

* Value is outside control limits.

^ The associated laboratory control sample exhibited high bias; since the result is ND, the impact on data quality is minimal.

Southern Research Laborato	ries, Inc.	NELAP Certified
an MBE Environmental Labo	ratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032
Orlando, Florida 32804 (407) 522-7100		Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & Co	onstruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

Metals (total recoverable) by EPA 6000/7000 Series Methods

Client ID #	: SW-1	MW-8	MW-5	Method Blank
SRL (Lab) ID#	: 1406032-002	1406032-003	1406032-006	MB070114
Date Collected	: 06/25/14	06/25/14	06/25/14	NA
Lab FDOH Certification #	: E82277	E82277	E82277	E82277
Date Prepared	: 07/01/14	07/01/14	07/01/14	07/01/14
Date Analyzed	: 07/02/14	07/02/14	07/02/14	07/02/14 MDL PQL CAS Number
Aluminum	1550	343	1860	86.0 U 86.0 200 7429-90-5
Antimony	5.65 U	5.65 U	5.65 U	5.65 U 5.65 40.0 7440-36-0
Arsenic	7.12 U	7.12 U	7.12 U	7.12 U 7.12 10.0 7440-38-2
Barium	30.3	7.88 J	21.9	0.630 U 0.630 10.0 7440-39-3
Boron	111	88.5	86.6	6.24 U 6.24 50.0 7440-42-8
Cadmium	0.263 J	0.521 J	0.778 J	0.170 U 0.170 1.00 7440-43-9
Chromium	5.54 J	1.30 U	7.63 J	1.30 U 1.30 10.0 7440-47-3
Copper	1.09 J	0.940 U	0.940 U	0.940 U 0.940 10.0 7440-50-8
Lead	3.65 J	2.20 U	2.78 J	2.20 U 2.20 10.0 7439-92-1
Selenium	6.60 U	6.60 U	6.60 U	6.60 U 6.60 40.0 7782-49-2
Sodium	6560	13400	13800	56.0 U 56.0 500 7440-23-5
Tin	5.92 J	5.40 U	5.40 U	5.40 U 5.40 40.0 7440-31-5
Units	: ug/L	ug/L	ug/L	ug/L
Dilution Factor (MEDF)	: 1	1	1	1

Metals (total recoverable) by EPA 6000/7000 Series Methods

Client ID #	: SW-1	MW-8	MW-5	Method Bla	nk		
SRL (Lab) ID#	: 1406032-002	1406032-003	1406032-006	MB070714			
Date Collected	: 06/25/14	06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E83182	E83182	E83182	E83182			
Date Prepared	: 07/07/14	07/07/14	07/07/14	07/07/14			
Date Analyzed	: 07/08/14	07/08/14	07/08/14	07/08/14	MDL	PQL	CAS Number
Mercury	0.109 J	0.0230 U	0.0367 J	0.0230 U	0.0230	0.200	7439-97-6
Units	: ug/L	ug/L	ug/L	ug/L			
Dilution Factor (MEDF)	: 1	1	1	1			

Metals (Dissolved) by EPA 6000/7000 Series Methods

Client ID #	: SW-1	MW-8	MW-5	Method Blank		
SRL (Lab) ID#	: 1406032-002	1406032-003	1406032-006	MB071414		
Date Collected	: 06/25/14	06/25/14	06/25/14	NA		
Lab FDOH Certification #	: E82277	E82277	E82277	E82277		
Date Prepared	: 07/14/14	07/14/14	07/14/14	07/14/14		
Date Analyzed	: 07/15/14	07/15/14	07/15/14	07/15/14 MDL	PQL	CAS Number
Aluminum	246	283	275	86.0 U 86.0	200	7429-90-5

Southern Research Laborator	ries, Inc.	NELAP Certified
an MBE Environmental Labor	ratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & Co	onstruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614		Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

QAQC (SVOCs) Prep Method: EPA 3510C 1,2,4-Trichlorobenzene 1,4-Dichlorobenzene 2,4-Dinitrotoluene 2-Chlorophenol 4-Chloro-3-methylphenol 4-Nitrophenol Acenaphthene N-Nitroso-di-n-propylamine	% Recovery LCS/MS/MSD 85/51/65 86/56/66 105/93/91 * 101/67/74 101/61/75 46/40/32 * 102/64/80 121/78/85	LCS Acceptable Limits 20-95 17-94 63-120 50-97 54-108 10-129 50-95 53-124	MS/MSD Acceptable Limits 20-95 17-94 63-120 50-97 54-108 10-129 50-95 53-124	% RPD MS/MSD 24 16 2 10 22 20 22 8	Acceptable Limits 0-32 0-34 0-23 0-27 0-28 0-35 0-27 0-24
Pentachlorophenol	* 110/101/92	27-100	27-100	8 10	0-24
Phenol	44/24/25	14-54	14-54	7	0-32
Pyrene	* 135/122/105	61-115	61-115	15	0-28
·					
0400	0/ D	LCS	MS/MSD		A
QAQC Bron Mothod: EDA 2005A	% Recovery LCS/MS/MSD	Acceptable Limits	Acceptable Limits	%RPD MS/MSD	Acceptable Limits
Prep Method: EPA 3005A Aluminum	101/100/102	80-120	75-125	1	0-20
Antimony	102/102/103	80-120 80-120	75-125	0.8	0-20
Arsenic	102/102/103	80-120 80-120	75-125	2	0-20
Barium	102/102/103	80-120	75-125	1	0-20
Boron	102/102/103	80-120	75-125	1	0-20
Cadmium	105/104/105	80-120	75-125	1	0-20
Chromium	102/102/103	80-120	75-125	1	0-20
	102/102/103	80-120 80-120	75-125	1	0-20
Copper Lead	105/104/106	80-120 80-120	75-125	1	0-20
Selenium	102/97/98	80-120	75-125	1	0-20
Sodium	103/101/103	80-120	75-125	2	0-20
Tin	102/101/102	80-120	75-125	1	0-20
1111	102/101/102	80-120	75-125	1	0-20
QAQC Prep Method: EPA 3005A Aluminum, Dissolved	% Recovery LCS/MS/MSD 99/99/97	LCS Acceptable Limits 80-120	MS/MSD Acceptable Limits 75-125	% RPD MS/MSD 3	Acceptable Limits 0-20
QAQC Prep Method: EPA 7470A Mercury	% Recovery LCS/MS/MSD 97/94/96	LCS Acceptable Limits 80-120	MS/MSD Acceptable Limits 75-125	% RPD MS/MSD 1	Acceptable Limits 0-20

* The associated laboratory control sample exhibited high bias; since the result is ND, the impact on data quality is minimal.

Southern Research Laborate	ories, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06032
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	Construction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

DATA QUALIFIER CODES

Reporting Exceptions and Qualified Data

When quality control results are outside established control limits reanalysis, including re-extraction (if applicable), is preferred. If re-analysis is not viable or desirable, then results may be qualified. Sample results associated with quality control data that exceed acceptance criteria will be qualified with an appropriate comment.

 \mathbf{D} = Data reported from a dilution and or multiple dilutions.

D5=1/5, D10= 1/10, D20= 1/20, D50= 1/50, D100= 1/100, D200= 1/200, D1= 1/1000

- J = Estimated Value, The reported value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL)
- $\mathbf{L} = \text{Off-Scale high}$; exceeds the linear range or highest calibration standard.
- **O** = Sampled, but analysis lost or not performed
- $\mathbf{Q} = \mathbf{S}$ ample held beyond normal holding time
- \mathbf{U} = indicates the compound was analyzed for, but not detected. The numerical value preceding the "U" is the limit of detection for that compound based upon the dilution. **MEDF** = Matrix Effected Dilution Factor.
- \mathbf{V} = Analyte was detected in both the sample and associated Laboratory Method Blank; Laboratory Contamination
- \mathbf{Y} = The analysis was from an unpreserved or improperly preserved sample. The data may not be accurate

Unless otherwise noted, ug/Kg and mg/Kg denote dry weight.

(SOILS) Actual Reporting Limit will depend on moisture content of sample and the amount of sample received.

Southern Research Laboratories, Inc.

Quality Assurance/Quality Control Report

Client: Progressive Engineering & Construction, Inc.

Project:

P9000 City Of Tampa Tampa, FL SRL# 1406032 QC07011404.D MSQC070114 18-19.D Parent Sample 07011417.D (DW-1)

VOC Analytes	Method Blank Value	LCS Obs. Value	LCS True Value	LCS % Rec.	Sample Value	Spike Amount Added	MS Value	MSD Value	MS % Rec.	MSD % Rec.	% Rec. Control Lower Limit	% Rec. Control Upper Limit	% RPD	RPD Control Limits
1,1-Dichloroethene (8)	0	28.2	25.0	113	0	25.0	30.2	30.6	121	122	70	130	1.3	30
Trans-1-2-Dichloroethene (11)	0	27.2	25.0	109	0	25.0	27.8	28.9	111	116	70	130	3.9	30
Chloroform (19)	0	24.5	25.0	98	0.6	25.0	26.5	25.8	103	101	70	130	2.6	30
Benzene (25)	0	22.5	25.0	90	0	25.0	23.1	23.4	92	94	70	130	1.5	30
Trichloroethene (28)	0	25.1	25.0	100	3.0	25.0	28.7	28.9	103	104	70	130	0.6	30
1,2-Dichloropropane (31)	0	22.5	25.0	90	0	25.0	22.8	23.3	91	93	70	130	2.3	30
Toluene (35)	0	24.6	25.0	98	0	25.0	25.1	24.0	100	96	70	130	4.4	30
Tetrachloroethene (36)	0	26.7	25.0	107	8.6	25.0	34.1	33.2	102	98	70	130	2.4	30
Chlorobenzene (44)	0	22.0	25.0	88	0	25.0	22.3	20.6	89	83	70	130	7.7	30
Ethylbenzene (45)	0	25.6	25.0	102	0	25.0	26.1	24.3	104	97	70	130	6.9	30
o-Xylene (48)	0	23.3	25.0	93	0	25.0	23.3	21.6	93	86	70	130	7.4	30
Surrogates:														
Dibromofluoromethane	101	9.9	10	98.9	94.7	10	10.5	10.9	105	109	70	130	3.4	30
1.2-Dichloroethane-D4	107	10.6	10	106	108	10	10.9	11.3	109	113	70	130	3.9	30
Toluene-D8	90.5	9.2	10	92.2	91.5	10	9.0	9.8	90.2	98.4	70	130	8.7	30
4-Bromofluorobenzene	97.3	9.7	10	96.6	97.3	10	9.2	9.8	92.4	98.0	70	130	5.9	30

07011402.D

SRL Quality Assurance Officer

Chain of Custo	dy															
Project Manager: Bridget Monsile Company: Programive Regionaling A Address:	& Countration Inc.		2	e	uthern search	ies, Inc	Orlan	•	ane, Su rida 32			Project	Name:		Page	of
3912 West Hissightony And City, State, Zip:					oracom	ies, me	•						Location	-		
Tempe Phone: +1 (\$15) 950-0669	Fax: +1 (813) 930-91	<u>33614</u>	Toll Free	1 (888) 42	20-TE	ST			(407) : (407)			Ta	mys, P	L		
Sampled by [Print Name(s)] / Affiliation	on:								atives (se					Project Number:		
C. Nichols) Pt	EC				F	H	T	N	N	I	I			2900 0		
Sampler(s) Signature(s):					~	0	[0]		yses Req	uested			T	REQUE Std.	STED DUE I	DATE:
V Sample Identification	Sampled	Grab or Composite	Matrix: (see codes)	Total Number of Containers	Dioxemp	K - 8260	ethy Line glycel	wefels-total	hetels dissibud	wide	ეი			Sampling QAP N Approval Da		
	Date: Time:				5-1-0	202	GH	3	ž	U	ŝ				Comments:	
1 DW-2	6/26/19/847	G	GW	4	(2)	Ð		ļ		140	603	20	01	* hold	di SSO lut	
2 SN-1 3 MW-8	6/25/14 1555	6	GW	7		0	3	0	0			-	602		sample	
3 MW-8	6/25/14 1514	G	GW	12	(2)	\bigcirc	$\overline{(3)}$	5	1	\odot	(2)	-	003	results a	of total	- metals
4 EW-2 8 EW-1	6/25/14 1407	6	GW	2		(2)							004	is awall	. N.	Types
K EW-1	6/25/14 1347	Ġ	62	2									200	to app	rus r	unning.
6 MW-5	6/15/14 1238	6	62	12	(2)	(\mathcal{L})	Θ	6	\mathcal{D}	\bigcirc	(2)		حلال			
1 TapBlank	6/25/14	6	DIT	2	Ø	Ø			-				667			
								ļ								
Shipment Me	thod:	, Re	linquished by:	/ Affiliation:	<u> </u>	D	atc:	Ti	me:		Acc	epted by	r. / Affili	ation:	Date:	Time:
Out: / /	Via:	Yell	Jun	`` ليكن	r 20000	9/12	114	[]	:30		~	1			6/17/7	1230
Returned: / /	Via:		1º			6/21	0/14		00			24	1		62714	14:10
Additional Comments: X316 1065 Har	~ + 2.0°-										<u>}</u>		\			
		X412		X40	NT7 -	<u> </u>			ng Kit No 63	47				Equipment ID N	0.:	
		ediment I = lee Only		SW = Surface c Acid & Ice		W = V Sulfuri	Vater(Bl c Acid &			Potential odium H	*****	*****		r(Specify: = Other(Specify))

2251 Lynx Lane, Suite 1 Orlando, Florida 32804 (407) 522-7100 Fax (407) 522-7043 Toll Free 1 (888) 420-Test

Thank you **Ms. Bridget Morello** for the opportunity to be of service to you and your company; we Sincerely Appreciate Your Business. SRL certifies these **Laboratory Results** were produced in accordance with NELAC Standards. Hold times and preservation requirements were met for all analytes unless specifically noted in the report. Results relate only to the samples as received.

Client Name: Pr	ogressive Eng. & Constru	uction, Inc.	Date(s) Collected: 06/25-06/26/14
Contact Name: I	Bridget Morello		Date Received: 06/27/14
Project Name: C	ity of Tampa		Time Received: 14:10
Project Number:	P9000		Date Reported : 07/08/14
Phone Number:	(813) 930-0669		Date Emailed : 07/08/14
Fax Number: (82	13) 930-9809		SRL Work Order # 14-06033
			R1 071714
SRL WO #	Clients #	Matrix	Analysis Requested
14-06033-001	MW-4	Liquid	8260(VOC)
14-06033-002	Soil Preburn	Soilid	TCLP VOCs/TCLP 4-RCRA Metals
14-06033-003	GW De Water	Liquid	TCLP 4-RCRA Metals
14-06033-004	MW-6	Liquid	* EPA 8260(VOC)/8260-SIM(1,4-Dioxane) Aluminum/Antimony/Arsenic /Barium/ Boron/Cadmium /Chromium/Lead/ Copper/Selenium /Sodium/Tin/ Mercury/Fluoride/SVOCs/ Ethylene glycol
14-06033-005	MW-7	Liquid	* EPA 8260(VOC)/8260-SIM(1,4-Dioxane) Aluminum/Antimony/Arsenic /Barium/ Boron/Cadmium /Chromium/Lead/ Copper/Selenium /Sodium/Tin/ Mercury/Fluoride/SVOCs/ Ethylene glycol
14-06033-006	DW-1	Liquid	EPA 8260(VOC)/8260-SIM(1,4-Dioxane)
14-06033-007	Trip Blank	Liquid	EPA 8260(VOC)/8260-SIM(1,4-Dioxane)

Nonconformance: This report is an amendment to the original report dated June 08, 2014 for this work order. Additional Information: The samples listed above (*) were originally on hold per client request. After the final report was issued, the client requested dissolved Aluminum analysis of these samples. The results are included in this revised report.

Affected Samples: MW-6 [1406033-004], MW-7 [1406033-005]

Sherri Payne

Vice President & Quality Assurance Officer

Southern Research Laboratories, Inc.

Southern Research Laborate	pries, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	onstruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 8260B 1,4-Dioxane in Water by GC-MS Method 8260 Purge and Trap using Gas Chromatography/Mass Spectrometry and Selective Ion Monitoring (SIM)

Client ID #	: MW-6	MW-7	DW-1	Trip Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	1406033-006	1406033-00	7		
Date Collected	: 06/25/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/03/14	07/03/14	07/03/14	07/03/14			
Date Analyzed	: 07/03/14	07/03/14	07/03/14	07/03/14	MDL	PQL	CAS Number
1,4-Dioxane	1.0 U	1.0 U	0.5 U	0.5 U	0.5	1.0	123-91-1
Units	: ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 2	2	1	1	1	1	
Surrogate (% Rec)	:			(Surrogat	e Contro	l Limits)
Dioxane-d8	125.6%	123.3%	120.0%	117.2%		70-130	

Client ID #	: Method Blank			
SRL (Lab) ID#	: MB070314			
Date Collected	: NA			
Lab FDOH Certification #	: E83484			
Date Prepared	: 07/03/14			
Date Analyzed	: 07/03/14	MDL	PQL	CAS Number
1,4-Dioxane	0.5 U	0.5	1.0	123-91-1
Units	: ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 1	1	1	
Surrogate (% Rec)	:	(Surrogat	e Contro	l Limits)
Dioxane-d8	100.0%		70-130	

	% Recovery	Acceptable	%RPD	Acceptable	
	LCS/MS/MSD	Limits	MS/MSD	Limits	
1,4-Dioxane	97/93/106	70-130	11	0-30	

Southern Research Laborate	ories, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	Construction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS

Client ID #	: MW-4	MW-6	MW-7	DW-1			
SRL (Lab) ID#	: 1406033-001	1406033-004	1406033-005	1406033-006			
Date Collected	: 06/26/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/01/14	07/01/14	07/01/14	07/01/14			
Units	: ug/L	ug/L	ug/L	ug/L	MDL	PQL	CAS Number
Dichlorodifluoromethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	75-71-8
Chloromethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	74-87-3
Vinyl Chloride	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-01-4
Bromomethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	74-83-9
Chloroethane	2.0 U	2.0 U	2.0 U	2.0 U	0.5	2.0	75-00-3
Trichlorofluoromethane	2.0 U	2.0 U	2.0 U	2.0 U	1.0	2.0	75-69-4
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-35-4
Methylene Chloride	5.0 U	5.0 U	5.0 U	5.0 U	2.0	5.0	75-09-02
Trans-1,2-Dichloroethene	1.0 U	0.4 J	1.0 U	1.0 U	0.2	1.0	156-60-5
Acetone	50 U	50 U	50 U	50 U	25	50	67-64-1
Methyl tert-Butyl Ether	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	1634-04-4
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	0.8 J	0.2	1.0	75-34-3
Cis-1,2-Dichloroethene	1.0 U	3.0	1.0 U	0.8	0.2	1.0	156-59-2
2,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	590-20-7
Bromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	74-97-5
Chloroform	1.0 U	1.0 U	0.4 J	0.6 J	0.2	1.0	67-66-3
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	0.8	1.0	56-23-5
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	71-55-6
1,1-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	563-58-6
2-Butanone (MEK)	10 U	10 U	10 U	10 U	5.0	10	78-93-3
Benzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	71-43-2
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	107-06-2
Trichloroethene	1.0 U	2.2	1.0 U	3.0	0.2	1.0	79-01-6
Dibromomethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	74-95-3
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	78-87-5
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	75-27-4
Cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-01-5
Toluene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	108-88-3
Tetrachloroethene	20	0.5 J	1.0	8.6	0.2	1.0	127-18-4
4-Methyl-2-Pentanone (MIBK)	10 U	10 U	10 U	10 U	5.0	10	108-10-1
Trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	10061-02-6
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	79-00-5
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	124-48-1
1,3-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	142-28-9
1,2-Dibromoethane (EDB)	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	106-93-4
2-Hexanone (MBK)	10 U	10 U	10 U	10 U	5.0	10	591-78-6
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	108-90-7
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	100-41-4
1,1,1,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	630-20-6
m- & p-Xylene	2.0 U	2.0 U	2.0 U	2.0 U	1.0	2.0	108-38-3/106-42-3
o-Xylene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	95-47-6

Southern Research Laborato	pries, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	onstruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS (cont)

Client ID #	: MW-4	MW-6	MW-7	DW-1			
SRL (Lab) ID#	: 1406033-001	1406033-004	1406033-005	1406033-0	006		
Date Collected	: 06/26/14	06/25/14	06/25/14	06/25/14			
Lab FDOH Certification #	: E83484	E83484	E83484	E83484			
Date Prepared	: 07/01/14	07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/01/14	07/01/14	07/01/14	07/01/14	MDL	PQL	CAS Number
Styrene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	100-42-5
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	75-25-2
Isopropylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	98-82-8
Bromobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	108-86-1
n-Propylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.4	1.0	103-65-1
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	79-34-5
2-Chlorotoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	95-49-8
1,2,3-Trichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	96-18-4
1,3,5-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	108-67-8
4-Chlorotoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	106-43-4
tert-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	98-06-6
1,2,4-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	95-63-6
sec-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	135-98-8
p-Isopropyltoluene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	99-87-6
1,3-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	541-73-1
1,4-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	106-46-7
n-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	104-51-8
1,2-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.1	1.0	95-50-1
1,2-Dibromo-3-Chloropropane	3.0 U	3.0 U	3.0 U	3.0 U	1.0	3.0	96-12-8
1,2,4-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.2	1.0	120-82-1
Hexachlorobutadiene	3.0 U	3.0 U	3.0 U	3.0 U	2.0	3.0	87-68-3
Naphthalene	5.0 U	5.0 U	5.0 U	5.0 U	2.0	5.0	91-20-3
1,2,3-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	0.5	1.0	87-61-6
Units	: ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Dilution Factor (MEDF)	: 1	1	1	1	1	1	
Surrogate (% Rec)	:				(Surrogat	e Control	Limits)
Dibromofluoromethane	102.2%	99.3%	104.1%	94.7%		70-130	
1-2-Dichloroethane-d4	113.2%	107.6%	113.4%	108.1%		70-130	
Toluene-D8	88.8%	89.7%	87.0%	91.5%		70-130	
4-Bromofluorobenzene	97.5%	97.2%	99.5%	97.3%		70-130	

Southern Research Laborato	ories, Inc.	NELAP Certified
an MBE Environmental Labo	ratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	onstruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS

Client ID # SRL (Lab) ID#	: Trip Blank : 1406033-007			
Date Collected	: 06/25/14			
Lab FDOH Certification #	: E83484			
Date Prepared	: 07/01/14			
Date Analyzed	: 07/01/14			
Units	: ug/L	MDL	PQL	CAS Number
Dichlorodifluoromethane	2.0 U	0.5	2.0	75-71-8
Chloromethane	2.0 U	0.5	2.0	74-87-3
Vinyl Chloride	1.0 U	0.2	1.0	75-01-4
Bromomethane	2.0 U	0.5	2.0	74-83-9
Chloroethane	2.0 U	0.5	2.0	75-00-3
Trichlorofluoromethane	2.0 U	1.0	2.0	75-69-4
1,1-Dichloroethene	1.0 U	0.2	1.0	75-35-4
Methylene Chloride	* 29	2.0	5.0	75-09-02
Trans-1,2-Dichloroethene	1.0 U	0.2	1.0	156-60-5
Acetone	50 U	25	50	67-64-1
Methyl tert-Butyl Ether	1.0 U	0.2	1.0	1634-04-4
1,1-Dichloroethane	1.0 U	0.2	1.0	75-34-3
Cis-1,2-Dichloroethene	1.0 U	0.2	1.0	156-59-2
2,2-Dichloropropane	1.0 U	0.2	1.0	590-20-7
Bromochloromethane	1.0 U	0.5	1.0	74-97-5
Chloroform	1.0 U	0.2	1.0	67-66-3
Carbon tetrachloride	1.0 U	0.8	1.0	56-23-5
1,1,1-Trichloroethane	1.0 U	0.2	1.0	71-55-6
1,1-Dichloropropene	1.0 U	0.2	1.0	563-58-6
2-Butanone (MEK)	10 U	5.0	10	78-93-3
Benzene	1.0 U	0.5	1.0	71-43-2
1,2-Dichloroethane	1.0 U	0.2	1.0	107-06-2
Trichloroethene	1.0 U	0.2	1.0	79-01-6
Dibromomethane	1.0 U	0.2	1.0	74-95-3
1,2-Dichloropropane	1.0 U	0.2	1.0	78-87-5
Bromodichloromethane	1.0 U	0.5	1.0	75-27-4
Cis-1,3-Dichloropropene	1.0 U	0.2	1.0	10061-01-5
Toluene	1.0 U	0.5	1.0	108-88-3
Tetrachloroethene	1.0 U	0.2	1.0	127-18-4
4-Methyl-2-Pentanone (MIBK)	10 U	5.0	10	108-10-1
Trans-1,3-Dichloropropene	1.0 U	0.2	1.0	10061-02-6
1,1,2-Trichloroethane	1.0 U	0.2	1.0	79-00-5
Dibromochloromethane	1.0 U	0.2	1.0	124-48-1
1,3-Dichloropropane 1,2-Dibromoethane (EDB)	1.0 U 1.0 U	0.2 0.1	1.0	142-28-9 106-93-4
2-Hexanone (MBK)	1.0 U 10 U	5.0	1.0 10	591-78-6
Chlorobenzene	10 U 1.0 U	0.2	1.0	108-90-7
Ethylbenzene	1.0 U 1.0 U	0.2	1.0	108-90-7
1,1,1,2-Tetrachloroethane	1.0 U 1.0 U	0.5	1.0 1.0	630-20-6
m- & p-Xylene	2.0 U	0.2	2.0	108-38-3/106-42-3
o-Xylene	2.0 U 1.0 U	0.5	2.0 1.0	95-47-6
o zvytene	1.0 0	0.5	1.0	<i>JJ-</i> 1 /-0

* Common Laboratory Contaminant

Southern Research Laborato	ories, Inc.	NELAP Certified
an MBE Environmental Labo	ratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	onstruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 5030/8260B Volatile Organics in Water by GC-MS (cont)

Client ID #	: Trip Blank	
SRL (Lab) ID#	: 1406033-007	
Date Collected	: 06/25/14	
Lab FDOH Certification #	: E83484	
Date Prepared	: 07/01/14	
Date Analyzed	: 07/01/14	MDL PQL CAS Number
Styrene	1.0 U	0.2 1.0 100-42-5
Bromoform	1.0 U	0.2 1.0 75-25-2
Isopropylbenzene	1.0 U	0.5 1.0 98-82-8
Bromobenzene	1.0 U	0.2 1.0 108-86-1
n-Propylbenzene	1.0 U	0.4 1.0 103-65-1
1,1,2,2-Tetrachloroethane	1.0 U	0.2 1.0 79-34-5
2-Chlorotoluene	1.0 U	0.2 1.0 95-49-8
1,2,3-Trichloropropane	1.0 U	0.2 1.0 96-18-4
1,3,5-Trimethylbenzene	1.0 U	0.5 1.0 108-67-8
4-Chlorotoluene	1.0 U	0.2 1.0 106-43-4
tert-Butylbenzene	1.0 U	0.5 1.0 98-06-6
1,2,4-Trimethylbenzene	1.0 U	0.5 1.0 95-63-6
sec-Butylbenzene	1.0 U	0.5 1.0 135-98-8
p-Isopropyltoluene	1.0 U	0.2 1.0 99-87-6
1,3-Dichlorobenzene	1.0 U	0.1 1.0 541-73-1
1,4-Dichlorobenzene	1.0 U	0.1 1.0 106-46-7
n-Butylbenzene	1.0 U	0.5 1.0 104-51-8
1,2-Dichlorobenzene	1.0 U	0.1 1.0 95-50-1
1,2-Dibromo-3-Chloropropane	3.0 U	1.0 3.0 96-12-8
1,2,4-Trichlorobenzene	1.0 U	0.2 1.0 120-82-1
Hexachlorobutadiene	3.0 U	2.0 3.0 87-68-3
Naphthalene	5.0 U	2.0 5.0 91-20-3
1,2,3-Trichlorobenzene	1.0 U	0.5 1.0 87-61-6
Units	: ug/L	ug/L ug/L
Dilution Factor (MEDF)	: 1	1 1
Surrogate (% Rec)	:	(Surrogate Control Limits)
Dibromofluoromethane	101.8%	70-130
1-2-Dichloroethane-d4	111.2%	70-130
Toluene-D8	90.7%	70-130
4-Bromofluorobenzene	98.0%	70-130

Southern Research Laborate	pries, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	Construction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA 8015C Non-Halogenated Semivolatile Organics by GC

Client ID #	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	MB070814			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E82277	E82277	E82277			
Date Prepared	: 07/08/14	07/08/14	07/08/14			
Date Analyzed	: 07/08/14	07/08/14	07/08/14	MDL	PQL	CAS Number
Ethylene Glycol	8.7 U	8.7 U	8.7 U	8.7	10	107-21-1
Units	: mg/L	mg/L	mg/L			
Dilution Factor (MEDF)	: 1	1	1			
Surrogate (% Rec)	:			(Surrogat	e Contro	l Limits)
1,3-Butylene Glycol	106.0%	101.0%	105.0%		50-150	

		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: No Prep	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Ethylene Glycol	94/91/89	70-130	70-130	3	0-25

EPA 300.0 Classical Chemistry Parameters

Client ID #	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	MB063014			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E83182	E83182	E83182			
Date Prepared	: 06/30/14	06/30/14	06/30/14			
Date Analyzed	: 06/30/14	06/30/14	06/30/14	MDL	PQL	CAS Number
Fluoride	0.24	0.35	0.02 U	0.02	0.20	16984-48-8
Units	: mg/L	mg/L	mg/L			
Dilution Factor (MEDF)	: 1	1	1			

		LCS	MS/MSD		
QAQC	% Recovery	Acceptable	Acceptable	%RPD	Acceptable
Prep Method: No Prep	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Fluoride	101/*83/*85	90-110	90-110	2	0-10

 \ast The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Southern Research Laborate	ories, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	Construction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614 (813) 930-0669		Tampa, FL

Metals (total recoverable) by EPA 6000/7000 Series Methods

Client ID #	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	MB070114			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E82277	E82277	E82277			
Date Prepared	: 07/01/14	07/01/14	07/01/14			
Date Analyzed	: 07/02/14	07/02/14	07/02/14	MDL	PQL	CAS Number
Aluminum	275	339	86.0 U	86.0	200	7429-90-5
Antimony	5.65 U	5.65 U	5.65 U	5.65	40.0	7440-36-0
Arsenic	7.12 U	7.12 U	7.12 U	7.12	10.0	7440-38-2
Barium	26.6	12.7	0.630 U	0.630	10.0	7440-39-3
Boron	1760	109	6.24 U	6.24	50.0	7440-42-8
Cadmium	0.170 U	0.170 U	0.170 U	0.170	1.00	7440-43-9
Chromium	1.30 U	1.30 U	1.30 U	1.30	10.0	7440-47-3
Copper	0.940 U	0.940 U	0.940 U	0.940	10.0	7440-50-8
Lead	2.20 U	2.20 U	2.20 U	2.20	10.0	7439-92-1
Selenium	6.60 U	6.60 U	6.60 U	6.60	40.0	7782-49-2
Sodium	12900	5250	56.0 U	56.0	500	7440-23-5
Tin	6.23 J	5.40 U	5.40 U	5.40	40.0	7440-31-5
Units	: ug/L	ug/L	ug/L			
Dilution Factor (MEDF)	: 1	1	1			

Metals (total recoverable) by EPA 6000/7000 Series Methods

Client ID #	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	MB070714			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E82277	E82277	E82277			
Date Prepared	: 07/07/14	07/07/14	07/07/14			
Date Analyzed	: 07/08/14	07/08/14	07/08/14	MDL	PQL	CAS Number
Mercury	0.0230 U	0.0230 U	0.0230 U	0.0230	0.200	7439-97-6
Units	: ug/L	ug/L	ug/L			
Dilution Factor (MEDF)	: 1	1	1			

Metals (Dissolved) by EPA 6000/7000 Series Methods

Client ID #	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004	1406033-005	MB071414			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E82277	E82277	E82277			
Date Prepared	: 07/14/14	07/14/14	07/14/14			
Date Analyzed	: 07/15/14	07/15/14	07/15/14	MDL	PQL	CAS Number
Aluminum	202	322	86.0 U	86.0	200	7429-90-5

Southern Research Laborator	ries, Inc.	NELAP Certified
an MBE Environmental Labor	ratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
0	motion Inc	5 5
Progressive Engineering & Co	Instruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

			Mathad Dlash			
Client ID #	: MW-6	MW-7	Method Blank			
SRL (Lab) ID# Date Collected	: 1406033-004 : 06/25/14	1406033-005 06/25/14	MB062914 NA			
Lab FDOH Certification #	: E83182		E83182			
	: E83182 : 06/29/14	E83182				
Date Prepared	: 07/07/14	06/29/14 07/07/14	06/29/14 07/07/14	MDL	DOI	CAS Number
Date Analyzed 1,2,4-Trichlorobenzene	3.3 U	3.3 U	3.3 U	3.3	PQL 10	120-82-1
1,2,4- Inchlorobenzene	3.3 U 3.2 U	3.3 U 3.2 U	3.2 U	3.3	10	95-50-1
1,3-Dichlorobenzene	3.4 U	3.4 U	3.4 U	3.4	10	541-73-1
1,4-Dichlorobenzene	3.4 U 3.2 U	3.4 U 3.2 U	3.2 U	3.4	10	106-46-7
1-Methylnaphthalene	3.1 U	3.2 U 3.1 U	3.1 U	3.1	10	90-12-0
2,4,5-Trichlorophenol	3.9 U	3.9 U	3.9 U	3.9	10	95-95-4
2,4,5-Trichlorophenol	6.4 U	6.4 U	6.4 U	5.9 6.4	10	88-06-2
2,4,0-memorophenol	6.5 U	6.5 U	6.5 U	0.4 6.5	10	120-83-2
2,4-Dimethylphenol	^ 6.4 U	^ 6.4 U	6.4 U	6.4	10	105-67-9
2,4-Dinitrophenol	7.7 U	0.4 U 7.7 U	0.4 U 7.7 U	7.7	10	51-28-5
2,4-Dinitrotoluene	3.2 U	3.2 U	3.2 U	3.2	10	121-14-2
2,4-Dinitrotoluene	2.9 U	2.9 U	2.9 U	2.9	10	606-20-2
2-Chloronaphthalene	3.2 U	3.2 U	3.2 U	3.2	10	91-58-7
2-Chlorophenol	^ 7.4 U	^ 7.4 U	5.2 U 7.4 U	5.2 7.4	10	95-57-8
2-Methyl-4,6-dinitrophenol	6.0 U	6.0 U	6.0 U	6.0	10	534-52-1
2-Methylnaphthalene	3.8 U	3.8 U	3.8 U	3.8	10	91-57-6
2-Methylphenol	3.5 U	3.5 U	3.5 U	3.5	10	95-48-7
2-Nitroaniline	3.3 U	3.3 U	3.3 U	3.3	10	88-74-4
2-Nitrophenol	5.2 U	5.2 U	5.2 U	5.2	10	88-75-5
3 & 4-Methylphenol	8.2 U	8.2 U	8.2 U	8.2	10	108-39-4/106-44-5
3,3'-Dichlorobenzidine	^ 3.3 U	^ 3.3 U	3.3 U	3.3	10	91-94-1
3-Nitroaniline	3.3 U	3.3 U	3.3 U	3.3	10	99-09-2
4-Bromophenyl-phenylether	3.3 U	3.3 U	3.3 U	3.3	10	101-55-3
4-Chloro-3-methylphenol	7.3 U	7.3 U	7.3 U	7.3	10	59-50-7
4-Chloroaniline	4.3 U	4.3 U	4.3 U	4.3	10	106-47-8
4-Chlorophenyl-phenylether	3.2 U	3.2 U	3.2 U	3.2	10	7005-72-3
4-Nitroaniline	3.2 U	3.2 U	3.2 U	3.2	10	100-01-6
4-Nitrophenol	7.9 U	7.9 U	7.9 U	7.9	10	100-02-7
Acenaphthene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	83-32-9
Acenaphthylene	3.3 U	3.3 U	3.3 U	3.3	10	208-96-8
Anthracene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	120-12-7
Benzidine	7.1 U	7.1 U	7.1 U	7.1	10	92-87-5
Benzo(a)anthracene	^ 3.2 U	^ 3.2 U	3.2 U	3.2	10	56-55-3
Benzo(a)pyrene	3.1 U	3.1 U	3.1 U	3.1	10	50-32-8
Benzo(b)fluoranthene	3.4 U	3.4 U	3.4 U	3.4	10	205-99-2
Benzo(g,h,i)perylene	3.7 U	3.7 U	3.7 U	3.7	10	191-24-2
Benzo(k)fluoranthene	3.3 U	3.3 U	3.3 U	3.3	10	207-08-9
Benzoic acid	15 U	15 U	15 U	15	50	65-85-0
Benzyl alcohol	3.9 U	3.9 U	3.9 U	3.9	10	100-51-6
Bis(2-chloroethoxy)methane	^ 3.3 U	^ 3.3 U	3.3 U	3.3	10	111-91-1
Bis(2-chloroethyl)ether	^ 3.8 U	^ 3.8 U	3.8 U	3.8	10	111-44-4

Southern Research Laborator	ries, Inc.	NELAP Certified
an MBE Environmental Labor	ratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
0	motion Inc	5 5
Progressive Engineering & Co	Instruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

Client ID #	: MW-6	MW-7	Method Blank			
SRL (Lab) ID#	: 1406033-004		MB062914			
Date Collected	: 06/25/14	06/25/14	NA			
Lab FDOH Certification #	: E83182	E83182	E83182			
Date Prepared	: 06/29/14	06/29/14	06/29/14			
Date Analyzed	: 07/07/14	07/07/14	07/07/14	MDL	PQL	CAS Number
Bis(2-chloroisopropyl)ether	3.5 U	3.5 U	3.5 U	3.5	10	108-60-1
Bis(2-ethylhexyl)phthalate	3.5 U	3.5 U	3.5 U	3.5	5.0	117-81-7
Butylbenzylphthalate	^ 5.1 U	^ 5.1 U	5.1 U	5.1	10	85-68-7
Chrysene	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	218-01-9
Dibenzo(a,h)anthracene	3.8 U	3.8 U	3.8 U	3.8	10	53-70-3
Dibenzofuran	2.8 U	2.8 U	2.8 U	2.8	10	132-64-9
Diethylphthalate	^ 3.0 U	^ 3.0 U	3.0 U	3.0	10	84-66-2
Dimethylphthalate	3.0 U	3.0 U	3.0 U	3.0	10	131-11-3
Di-n-butylphthalate	^ 3.2 U	^ 3.2 U	3.2 U	3.2	10	84-74-2
Di-n-octylphthalate	^ 3.6 U	^ 3.6 U	3.6 U	3.6	10	117-84-0
Fluoranthene	^ 4.0 U	^ 4.0 U	4.0 U	4.0	10	206-44-0
Fluorene	2.9 U	2.9 U	2.9 U	2.9	10	86-73-7
Hexachlorobenzene	3.0 U	3.0 U	3.0 U	3.0	10	118-74-1
Hexachlorobutadiene	4.1 U	4.1 U	4.1 U	4.1	10	87-68-3
Hexachlorocyclopentadiene	3.8 U	3.8 U	3.8 U	3.8	10	77-47-4
Hexachloroethane	3.0 U	3.0 U	3.0 U	3.0	10	67-72-1
Indeno(1,2,3-cd)pyrene	4.1 U	4.1 U	4.1 U	4.1	10	193-39-5
Isophorone	4.5 U	4.5 U	4.5 U	4.5	10	78-59-1
Naphthalene	^ 3.6 U	^ 3.6 U	3.6 U	3.6	10	91-20-3
Nitrobenzene	3.2 U	3.2 U	3.2 U	3.2	10	98-95-3
N-Nitrosodimethylamine	3.8 U	3.8 U	3.8 U	3.8	10	62-75-9
N-Nitroso-di-n-propylamine	4.5 U	4.5 U	4.5 U	4.5	10	621-64-7
N-nitrosodiphenylamine/Diphenylamine	5.4 U	5.4 U	5.4 U	5.4	10	86-30-6/122-39-4
Pentachlorophenol	^ 8.2 U	^ 8.2 U	8.2 U	8.2	10	87-86-5
Phenanthrene	^ 2.8 U	^ 2.8 U	2.8 U	2.8	10	85-01-8
Phenol	5.6 U	5.6 U	5.6 U	5.6	10	108-95-2
Pyrene	^ 4.1 U	^ 4.1 U	4.1 U	4.1	10	129-00-0
Pyridine	3.5 U	3.5 U	3.5 U	3.5	10	110-86-1
Units	ug/L	ug/L	ug/L			
Dilution Factor (MEDF)	1	1	1			
Surrogate (% Rec)	:			(Surrogat	e Cont	rol Limits)
2,4,6-Tribromophenol	67%	91%	78%		47-128	3
2-Fluorobiphenyl	* 40%	66%	77%		44-102	2
2-Fluorophenol	27%	41%	46%		25-79	
Nitrobenzene-d5	* 39%	64%	77%		43-112	2
Phenol-d5	23%	31%	32%		14-54	
Terphenyl-d14	* 123%	* 143%	* 135%		65-122	2

* Value is outside control limits.

^ The associated laboratory control sample exhibited high bias; since the result is ND, the impact on data quality is minimal.

Southern Research Laborate	pries, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	Construction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

Client ID #	: Soil Preburn	
SRL (Lab) ID#	: 1406033-002	
Date Collected	: 06/25/14	
Lab FDOH Certification #	: E83182	
Date Prepared	: 07/09/14	
Date Analyzed	: 07/09/14	MDL PQL CAS Number
1,1-Dichloroethene	0.09 U	0.09 0.100 75-35-4
1,2-Dichloroethane	0.06 U	0.06 0.100 107-06-2
2-Butanone	0.40 U	0.40 0.500 78-93-3
Benzene	0.07 U	0.07 0.100 71-43-2
Carbon Tetrachloride	0.09 U	0.09 0.100 56-23-5
Chlorobenzene	0.07 U	0.07 0.100 108-90-7
Chloroform	0.08 U	0.08 0.100 67-66-3
Tetrachloroethylene	0.08 U	0.08 0.100 127-18-4
Trichloroethene	0.09 U	0.09 0.100 79-01-6
Vinyl Chloride	0.07 U	0.07 0.100 75-01-4
Units	: mg/L	mg/L mg/L
Dilution Factor (MEDF)	: 100	100 100
Surrogate (% Rec)	:	(Surrogate Control Limits)
4-Bromofluorobenzene	88%	41-142
Dibromofluoromethane	88%	53-146
Toluene-D	83%	41-146
Client ID #	: Method Blank	
SRL (Lab) ID#	: MB070914	
Date Collected	: NA	
Lab FDOH Certification #	: E83182	
Date Prepared	: 07/09/14	
Date Analyzed	: 07/09/14	MDL PQL CAS Number
1,1-Dichloroethene	0.0009 U	0.0009 0.001 75-35-4
1,2-Dichloroethane	0.0006 U	0.0006 0.001 107-06-2
2-Butanone	0.0040 U	0.0040 0.005 78-93-3
Benzene	0.0007 U	0.0007 0.001 71-43-2
Carbon Tetrachloride	0.0009 U	0.0009 0.001 56-23-5
Chlorobenzene	0.0007 U	0.0007 0.001 108-90-7
Chloroform	0.0008 U	0.0008 0.001 67-66-3
Tetrachloroethylene	0.0008 U	0.0008 0.001 127-18-4
Trichloroethene	0.0009 U	0.0009 0.001 79-01-6
Vinyl Chloride	0.0007 U	0.0007 0.001 75-01-4
Units	: mg/L	mg/L mg/L
Dilution Factor (MEDF)	: 1	1 1
Surrogate (% Rec)	:	(Surrogate Control Limits)
4-Bromofluorobenzene	108%	41-142
Dibromofluoromethane	121%	53-146
Toluene-D	112%	41-146

Southern Research Laborator an MBE Environmental Labora 2251 Lynx Lane, Suite 1	NELAP Certified FDOH Cert # : E83484 SRL Lab Ref # : 14-06033						
	(407) 500 71	100		Received Date			
Orlando, Florida 32804	(407) 522-71	100		Received Date	: 00/2//14		
Bridget Morello				Project Numbe	r/Project Name		
Progressive Engineering & Co	nstruction, Inc.			P9000			
3912 West Humphrey Street				City Of Tamp	a		
Tampa, Florida 33614	(813) 930-06	569		Tampa, FL			
Tumpa, Honda 55011	(015) 750 00	,0,		1umpu, 12			
	TCLP Metals by 6000/7000 Series Method						
Client ID #	: Soil Preburn	GW De Water	Blank-1				
SRL (Lab) ID#	: 1406033-002	14-06033-003	MB070714				
Date Collected	: 06/26/14	06/26/14	NA				
Lab FDOH Certification #	: E82277	E82277	E82277				
Date Prepared	: 07/07/14	07/07/14	07/07/14				
Date Analyzed	: 07/09/14	07/09/14	07/09/14				
Units	: mg/L	mg/L	mg/L	MDL PQL	CAS Number		
Arsenic	0.178 U	0.178 U	0.178 U	0.178 0.250	7440-38-2		
Cadmium	0.00425 U	0.00425 U	0.00425 U	0.0043 0.0250	7440-43-9		
Chromium	0.0325 U	0.0325 U	0.0325 U	0.0325 0.250	7440-47-3		
Lead	0.0550 U	0.0550 U	0.0550 U	0.0550 0.500	7439-92-1		
Client ID #	: Blank-2	Blank-3	Blank-4				
SRL (Lab) ID#	: MB070714	MB070714	MB070714				
Date Collected	: NA	NA	NA				
Lab FDOH Certification #	: E82277	E82277	E82277				
Date Prepared	: 07/07/14	07/07/14	07/07/14				

Date Analyzed	: 07/09/14	07/09/14	07/09/14		
Units	: mg/L	mg/L	mg/L	MDL PQL	CAS Number
Arsenic	0.178 U	0.178 U	0.178 U	0.178 0.250	7440-38-2
Cadmium	0.00425 U	0.00425 U	0.00425 U	0.0043 0.0250	7440-43-9
Chromium	0.0325 U	0.0325 U	0.0325 U	0.0325 0.250	7440-47-3
Lead	0.0550 U	0.0550 U	0.0550 U	0.0550 0.500	7439-92-1

QAQC EPA Method 6010C	% Recovery	LCS Acceptable	MS/MSD Acceptable	%RPD	Acceptable
Prep Method: EPA 3010A	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Arsenic	103/102/103	80-120	75-125	1	0-20
Cadmium	101/99/99	80-120	75-125	0.9	0-20
Chromium	101/99/100	80-120	75-125	0.7	0-20
Lead	105/103/103	80-120	75-125	0.3	0-20

Southern Research Laboratories, Inc.		NELAP Certified
an MBE Environmental Labor	atory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & Co	nstruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA Method 8270D Semivolatile Organic Compounds by GCMS

QAQC (SVOCs) Prep Method: EPA 3510C	,	% Recovery LCS/MS/MSD	LCS Acceptable Limits	MS/MSD Acceptable Limits	%RPD MS/MSD	Acceptable Limits
1,2,4-Trichlorobenzene		85/51/65	20-95	20-95	24	0-32
1,4-Dichlorobenzene		86/56/66	17-94	17-94	16	0-34
2,4-Dinitrotoluene		105/93/91	63-120	63-120	2	0-23
2-Chlorophenol	*	101/67/74	50-97	50-97	10	0-27
4-Chloro-3-methylphenol		101/61/75	54-108	54-108	22	0-28
4-Nitrophenol		46/40/32	10-129	10-129	20	0-35
Acenaphthene	*	102/64/80	50-95	50-95	22	0-27
N-Nitroso-di-n-propylamine		121/78/85	53-124	53-124	8	0-24
Pentachlorophenol	*	110/101/92	27-100	27-100	10	0-26
Phenol		44/24/25	14-54	14-54	7	0-32
Pyrene	*	135/122/105	61-115	61-115	15	0-28

Metals (total recoverable) by EPA 6000/7000 Series Methods

QAQC EPA Method 6010C Prep Method: EPA 3005A	% Recovery LCS/MS/MSD	LCS Acceptable Limits	MS/MSD Acceptable Limits	%RPD MS/MSD	Acceptable Limits
Aluminum	101/100/102	80-120	75-125	1	0-20
Antimony	102/102/103	80-120	75-125	0.8	0-20
Arsenic	104/103/105	80-120	75-125	2	0-20
Barium	102/102/103	80-120	75-125	1	0-20
Boron	102/102/103	80-120	75-125	1	0-20
Cadmium	105/104/105	80-120	75-125	1	0-20
Chromium	102/102/103	80-120	75-125	1	0-20
Copper	103/103/104	80-120	75-125	1	0-20
Lead	105/104/106	80-120	75-125	1	0-20
Selenium	102/97/98	80-120	75-125	1	0-20
Sodium	103/101/103	80-120	75-125	2	0-20
Tin	102/101/102	80-120	75-125	1	0-20
		LCS	MS/MSD		
QAQC Prep Method: EPA 7470A Mercury	% Recovery LCS/MS/MSD 97/94/96	Acceptable Limits 80-120	Acceptable Limits 75-125	%RPD MS/MSD 1	Acceptable Limits 0-20

* The associated laboratory control sample exhibited high bias; since the result is ND, the impact on data quality is minimal.

Southern Research Laborator	ries, Inc.	NELAP Certified
an MBE Environmental Labor	ratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & Co	onstruction, Inc.	P9000
3912 West Humphrey Street		City Of Tampa
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

ED. 2020D N/C	% Recovery	LCS Acceptable	LCS/LCSD Acceptable	%RPD	Acceptable
EPA 5030B_MS	LCS/LCSD	Limits	Limits	LCS/LCSD	Limits
1,1-Dichloroethene	116/137	65-144	65-144	16	0-16
Benzene	108/112	73-138	73-138	3	0-14
Chlorobenzene	90/95	77-127	77-127	6	0-13
Trichloroethene	96/98	83-133	83-133	2	0-20

Metals (Dissolved) by 6000/7000 Series Method

QAQC EPA Method 6010C	% Recovery	LCS Acceptable	MS/MSD Acceptable	%RPD	Acceptable
Prep Method: EPA 3005A	LCS/MS/MSD	Limits	Limits	MS/MSD	Limits
Aluminum, Dissolved	99/99/97	80-120	75-125	3	0-20

Southern Research Laborate	ories, Inc.	NELAP Certified			
an MBE Environmental Labo	pratory	FDOH Cert # : E83484			
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-06033			
Orlando, Florida 32804	(407) 522-7100	Received Date : 06/27/14			
Bridget Morello		Project Number/Project Name			
Progressive Engineering & C	Construction, Inc.	P9000			
3912 West Humphrey Street		City Of Tampa			
Tampa, Florida 33614	(813) 930-0669	Tampa, FL			

DATA QUALIFIER CODES

Reporting Exceptions and Qualified Data

When quality control results are outside established control limits reanalysis, including re-extraction (if applicable), is preferred. If re-analysis is not viable or desirable, then results may be qualified. Sample results associated with quality control data that exceed acceptance criteria will be qualified with an appropriate comment.

 \mathbf{D} = Data reported from a dilution and or multiple dilutions.

D5=1/5, D10= 1/10, D20= 1/20, D50= 1/50, D100= 1/100, D200= 1/200, D1= 1/1000

- J = Estimated Value, The reported value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL)
- $\mathbf{L} = \text{Off-Scale high}$; exceeds the linear range or highest calibration standard.
- **O** = Sampled, but analysis lost or not performed
- $\mathbf{Q} = \mathbf{S}$ ample held beyond normal holding time
- \mathbf{U} = indicates the compound was analyzed for, but not detected. The numerical value preceding the "U" is the limit of detection for that compound based upon the dilution. **MEDF** = Matrix Effected Dilution Factor.
- \mathbf{V} = Analyte was detected in both the sample and associated Laboratory Method Blank; Laboratory Contamination
- \mathbf{Y} = The analysis was from an unpreserved or improperly preserved sample. The data may not be accurate

Unless otherwise noted, ug/Kg and mg/Kg denote dry weight.

(SOILS) Actual Reporting Limit will depend on moisture content of sample and the amount of sample received.

Southern Research Laboratories, Inc.

Quality Assurance/Quality Control Report

Client: **Progressive Engineering & Construction, Inc.** P9000

Project:

City Of Tampa Tampa, FL

SRL# 1406033 QC07011404.D MSQC070114 18-19.D Parent Sample 07011417.D (DW-1)

VOC Analytes	Method Blank Value	LCS Obs. Value	LCS True Value	LCS % Rec.	Sample Value	Spike Amount Added	MS Value	MSD Value	MS % Rec.	MSD % Rec.	% Rec. Control Lower Limit	% Rec. Control Upper Limit	% RPD	RPD Control Limits
1,1-Dichloroethene (8)	0	28.2	25.0	113	0	25.0	30.2	30.6	121	122	70	130	1.3	30
Trans-1-2-Dichloroethene (11)	0	27.2	25.0	109	0	25.0	27.8	28.9	111	116	70	130	3.9	30
Chloroform (19)	0	24.5	25.0	98	0.6	25.0	26.5	25.8	103	101	70	130	2.6	30
Benzene (25)	0	22.5	25.0	90	0	25.0	23.1	23.4	92	94	70	130	1.5	30
Trichloroethene (28)	0	25.1	25.0	100	3.0	25.0	28.7	28.9	103	104	70	130	0.6	30
1,2-Dichloropropane (31)	0	22.5	25.0	90	0	25.0	22.8	23.3	91	93	70	130	2.3	30
Toluene (35)	0	24.6	25.0	98	0	25.0	25.1	24.0	100	96	70	130	4.4	30
Tetrachloroethene (36)	0	26.7	25.0	107	8.6	25.0	34.1	33.2	102	98	70	130	2.4	30
Chlorobenzene (44)	0	22.0	25.0	88	0	25.0	22.3	20.6	89	83	70	130	7.7	30
Ethylbenzene (45)	0	25.6	25.0	102	0	25.0	26.1	24.3	104	97	70	130	6.9	30
o-Xylene (48)	0	23.3	25.0	93	0	25.0	23.3	21.6	93	86	70	130	7.4	30
Surrogates:		1			1	n	-				r	r		r
Dibromofluoromethane	101	9.9	10	98.9	94.7	10	10.5	10.9	105	109	70	130	3.4	30
1.2-Dichloroethane-D4	107	10.6	10	106	108	10	10.9	11.3	109	113	70	130	3.9	30
Toluene-D8	90.5	9.2	10	92.2	91.5	10	9.0	9.8	90.2	98.4	70	130	8.7	30
4-Bromofluorobenzene	97.3	9.7	10	96.6	97.3	10	9.2	9.8	92.4	98.0	70	130	5.9	30

07011402.D

SRL Quality Assurance Officer

Chain of Custo	dy																
Project Manager: <u>Bridget Monsilo</u> Company: <u>Programive Reginesting</u> Address:	. Constructio	n linc.		M	le le le	uthern search oratori		Orland	Lynx L do, Flo				Project			Page	of
3912 West Hampitony Site													Project	y of T Location	-		
Tanga,	Floride		33614						í	(407)	522-7	7100					
ione: +1 (813) 930-0669	Fax:	3) 930-91	09	Toll Free	1 (888) 42	20-TE	ST		Fax:	(407) 522-	7043	Ta	nya, X	L		
mpled by [Print Name(s)] / Affiliation	m:				<u> </u>					atives (se	, 				Project Numbe	r:	
C. Nichuls	PEC					I	Н	Ŧ	N	N	I	I	Ŧ	I	29000		
ampler(s) Signature(s):	/								Anal	yses Req	uested				REQU	ESTED DUE	DATE:
A						7	29	la)		disguk			teli	IJ	56.		
7					of	Š.	0923	5	totel	ō			14	~ JCK	Sampling QAP	No.:	
Sample Identification	Samp	ad	2	see	Total Number of Containers	Diokare	1	ethy low 3 year	-1	-5-	7		43	à	Approval I	Date:	
Sample Identification	Joant	Acu	Grab or Composite	Matrix: (see codes)	al Nu taine		200	F	wytels -	witchs.	lunde	SUCC	37	5			
	Date:	Time:	Com	Mat cod	Tot		7	む	ž	3	UL.		-	F		Comments:	140603
1 MW-4	62614	8546	G	GW	1+1		D	an	A Vic	10	MIY!	4 F	with		* hold	dissolv	cd -
2 Soil Pahun	6 26 14	9156	P.C	S	2								\bigcirc	Q	metal	is samp	65 -
3 GW Des. Water	62014	910 -	PC	GW	2										motil y	rsults	- 20
4 MW-6		1134	6	GW	12	(2)	2	3	5	5	D	2		4	TOTAL	metals	is -
MW-7	6/25/14	912	G	GW	12	12	(2)	13	5	5	h	12			avail.	N. Tyn	er lo-
DW-1	6/25/14	1040	G	GW	ч	$\overline{\mathbb{Q}}$	2	1					1		approve	sunning	
7 Trip Blank	6/25/14		G	Dt	2	P	Ø		rol	2	XH	2	1	[- 00
3 Fry												†					
• • • • • • • • • • • • • • • • • • •						ļ	ļ										
Shipment Met	thod:		R	elinquished by:	/ Affiliation:			ate:	Ti				cepted by	/ Affili	ation:	Date:	Time:
Out: / /	Via:			- Ju		·	6-17-		12		 		1	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		6/17/14	
eturned: / /	Via:		1.4.	- Contraction			6/26		110		1	Cik	al	1-1		6.27.1E	1410
				[1		1			V	<	11			T
wile tom Ku	12 = 0	9.95										0		1			
6N DRAWHER LAMAR FO	e scup for	(
hadditional Comments: CUSTER Hourse X4 how DRAWHEN DO MODER TO K Will Recollect it Plog	r (chainer	υX	Cooler No	s)/Temperatus	re(s) (°C):	0			Sampli	ng Kit N	o.: 234	7			Equipment ID	No.:	
Matrix Codes: A = Air G	W = Groundwate	T SE = S	Sediment	SO = Soil	SW = Surface		W = \	Water(Bl	anks)			l Haz Wi	aste () = Othe	l er(Specify:)
Preservative Codes: H = Hy	drochloric Acid d	& lee 1	I = lee Only	N = Nitri	c Acid & Ice	S =	- Sulfuri	c Acid &	. Ice	X = \$	odium H	ydroxide			= Other(Specify))	

2251 Lynx Lane, Suite 1 Orlando, Florida 32804 (407) 522-7100 Fax (407) 522-7043 Toll Free 1 (888) 420-Test

Thank you **Ms. Bridget Morello** for the opportunity to be of service to you and your company; we Sincerely Appreciate Your Business. SRL certifies these **Laboratory Results** were produced in accordance with NELAC Standards. Hold times and preservation requirements were met for all analytes unless specifically noted in the report. Results relate only to the samples as received.

Client Name: Progressive Eng. & Construction, Inc.	Date(s) Collected: 06/30/14
Contact Name: Bridget Morello	Date Received: 07/01/14
Project Name: Tampa-East Hanna Avenue	Time Received: 11:45
Project Number: P2324	Date Reported : 07/14/14
Phone Number: (813) 930-0669	Date Emailed : 07/14/14
Fax Number: (813) 930-9809	SRL Work Order # 14-07001

SRL WO #	Clients #	Matrix	Analysis Requested
14-07001-001	Purge Barrel	Liquid	TCLP VOCs

Sherri Payne

Vice President & Quality Assurance Officer Southern Research Laboratories, Inc.

Southern Research Laborato	ries, Inc.	NELAP Certified
an MBE Environmental Labor	ratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-07001
Orlando, Florida 32804	(407) 522-7100	Received Date : 07/01/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & Co	onstruction, Inc.	P2324
3912 West Humphrey Street		Tampa-East Hanna Avenue
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

Client ID #	: Purge Barrel	
SRL (Lab) ID#	: 14-07001-001	
Date Collected	: 06/30/14	
Lab FDOH Certification #	: E83182	
Date Prepared	: 07/09/14	
Date Analyzed	: 07/09/14	MDL PQL CAS Number
1,1-Dichloroethene	0.09 U	0.09 0.100 75-35-4
1,2-Dichloroethane	0.06 U	0.06 0.100 107-06-2
2-Butanone	0.40 U	0.40 0.500 78-93-3
Benzene	0.07 U	0.07 0.100 71-43-2
Carbon Tetrachloride	0.09 U	0.09 0.100 56-23-5
Chlorobenzene	0.07 U	0.07 0.100 108-90-7
Chloroform	0.08 U	0.08 0.100 67-66-3
Tetrachloroethylene	0.08 U	0.08 0.100 127-18-4
Trichloroethene	0.09 U	0.09 0.100 79-01-6
Vinyl Chloride	0.07 U	0.07 0.100 75-01-4
Units	: mg/L	mg/L mg/L
Dilution Factor (MEDF)	: 100	100 100
Surrogate (% Rec)	:	(Surrogate Control Limits)
4-Bromofluorobenzene	108%	41-142
Dibromofluoromethane	115%	53-146
Toluene-D	110%	41-146
Client ID #	: Method Blank	
SRL (Lab) ID#	: MB070914	
Date Collected	: NA	
Lab FDOH Certification #	: E83182	
Date Prepared	: 07/09/14	
Date Analyzed	: 07/09/14	MDL PQL CAS Number
1,1-Dichloroethene	0.0009 U	0.0009 0.001 75-35-4
1,2-Dichloroethane	0.0006 U	0.0006 0.001 107-06-2
2-Butanone	0.0040 U	0.0040 0.005 78-93-3
Benzene	0.0007 U	0.0007 0.001 71-43-2
Carbon Tetrachloride	0.0009 U	0.0009 0.001 56-23-5
Chlorobenzene	0.0007 U	0.0007 0.001 108-90-7
Chloroform	0.0008 U	0.0008 0.001 67-66-3
Tetrachloroethylene	0.0008 U	0.0008 0.001 127-18-4
Trichloroethene	0.0009 U	0.0009 0.001 79-01-6
Vinyl Chloride	0.0007 U	0.0007 0.001 75-01-4
Units	: mg/L	mg/L mg/L
Dilution Factor (MEDF)	: 1	1 1
Surrogate (% Rec)	:	(Surrogate Control Limits)
4-Bromofluorobenzene	108%	41-142
Dibromofluoromethane	121%	53-146
Toluene-D	112%	41-146
		11 110

Southern Research Laborate	pries, Inc.	NELAP Certified
an MBE Environmental Labo	pratory	FDOH Cert # : E83484
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-07001
Orlando, Florida 32804	(407) 522-7100	Received Date : 07/01/14
Bridget Morello		Project Number/Project Name
Progressive Engineering & C	onstruction, Inc.	P2324
3912 West Humphrey Street		Tampa-East Hanna Avenue
Tampa, Florida 33614	(813) 930-0669	Tampa, FL

EPA 5030B_MS	% Recovery LCS/LCSD	LCS Acceptable Limits	LCS/LCSD Acceptable Limits	%RPD LCS/LCSD	Acceptable Limits
1,1-Dichloroethene	90/86	65-144	65-144	4	0-16
Benzene	95/87	73-138	73-138	8	0-14
Chlorobenzene	91/84	77-127	77-127	7	0-13
Trichloroethene	121/110	83-133	83-133	10	0-20

Southern Research Laborato	ories, Inc.	NELAP Certified				
an MBE Environmental Labo	ratory	FDOH Cert # : E83484				
2251 Lynx Lane, Suite 1		SRL Lab Ref # : 14-07001				
Orlando, Florida 32804	(407) 522-7100	Received Date : 07/01/14				
Bridget Morello		Project Number/Project Name				
Progressive Engineering & C	onstruction, Inc.	P2324				
3912 West Humphrey Street		Tampa-East Hanna Avenue				
Tampa, Florida 33614	(813) 930-0669	Tampa, FL				

DATA QUALIFIER CODES

Reporting Exceptions and Qualified Data

When quality control results are outside established control limits reanalysis, including re-extraction (if applicable), is preferred. If re-analysis is not viable or desirable, then results may be qualified. Sample results associated with quality control data that exceed acceptance criteria will be qualified with an appropriate comment.

 \mathbf{D} = Data reported from a dilution and or multiple dilutions.

D5=1/5, D10= 1/10, D20= 1/20, D50= 1/50, D100= 1/100, D200= 1/200, D1= 1/1000

- J = Estimated Value, The reported value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL)
- $\mathbf{L} = \text{Off-Scale high}$; exceeds the linear range or highest calibration standard.
- **O** = Sampled, but analysis lost or not performed
- $\mathbf{Q} = \mathbf{S}$ ample held beyond normal holding time
- U = indicates the compound was analyzed for, but not detected. The numerical value preceding the "U" is the limit of detection for that compound based upon the dilution. **MEDF** = Matrix Effected Dilution Factor.
- \mathbf{V} = Analyte was detected in both the sample and associated Laboratory Method Blank; Laboratory Contamination
- \mathbf{Y} = The analysis was from an unpreserved or improperly preserved sample. The data may not be accurate

Unless otherwise noted, ug/Kg and mg/Kg denote dry weight.

(SOILS) Actual Reporting Limit will depend on moisture content of sample and the amount of sample received.

Chain of Custo																
Project Manager: <u>CHERYL</u> NICHOLS Company: Programing & Countrastien Inc.			1	2251 Lynx Lane, Suite #1 Orlando, Florida 32804 aboratories, Inc.				Project Name:								
Address: 3912 West Humphony Humat City, State, Zip: Tampo, Plante 33614									TAMPA-EAST HANNA AVENUE Project Location:							
Phone: +1 (\$15) 590-0649	Fax: +1 (#13) 939-9489	Toll Free	(407) 522-7100 TAMPA, F L Foll Free 1 (888) 420-TEST Fax: (407) 522-7043												
Sampled by [Print Name(s)] / Affiliation	м: 			<u> </u>					atives (se					Project Number	· D77	~ / /
ANTHONY BUTE	HER/P	EC			T										P23	24
Sampler(s) Signature(s)	2			Analyses Requested					REQUESTED DUE DATE:							
Mpl	S											STD.				
<i>µ</i>				r of	101		r							Sampling QAP	No.:	ł –
Sample Identification	Sample	d _ j	: (see	lumbe	م									Approval D	ate:	
	Date:	d C G and C D D T T T T T T T T T T T T T T T T T	Matrix: (see codes)	Total Number of Containers	12										Comments:	
PURGE BAREEL		6:00 G	GW	Z	X									14070	001-00	<u>יי</u>
1			† *													-1
	+										X	/				
													\geq			
Shipment Method:			l Relinquished by:	l : / Affiliation:		Da	nte:	Ti	ne:		Acc	epted by	l /: / Affili	ation:	Date:	Time:
Out: 6 1301 1 L	Via: Fedex		Ja p	hrne			/14	16:		A.C	34	chr	_/P	IE C	6/30/4	12:00
Returned: / / Via:			ngne	C/PE	C	6/30	114	16:	15	ļļļ	la	Su	h		7-1-14	11:45
Additional Comments:										(Visi	Erry	Y.			
	.(s) / Temperatu	(s)/Temperature(s) (°C):				Sampling Kit No.:					Equipment ID No.:					
Matrix Codes: A = Air G	W = Groundwater	SE = Sediment	SO = Soil	SW = Surface	Water	<u> </u>	Vater(Bl	anks)	<u>HW</u> = :	Potential	Haz Wa	iste (0 = Othe	l r(Specify:)
Preservative Codes: H = Hydrochloric Acid & Ice I = Ice Only N = Nitric Acid & Ice S = Sulfuric Acid & Ice X = Sodium Hydroxide & Ice O = Other(Specify)																

Limited Phase II Site Investigation Former General Cable Facility, Tampa, Florida

ATTACHMENT E

Cost Estimate Letter

G:\PROJECTS\Tampa - East Hanna Avenue\Reports\Report_East Hanna Ave.docx

July 18, 2014

Mr. Dan Fahey City of Tampa Department of Solid Waste & Environmental Management 4010 W. Spruce Street Tampa, FL 33607

Re: Limited Phase 2 Investigation, Cost Estimates for Assessment & Remediation 2515 East Hanna Avenue Property, Tampa, Florida

Dear Mr. Fahey:

As you know, Progressive Engineering & Construction, Inc. (Progressive) completed a Limited Phase 2 Investigation at the subject site June 16-30, 2014. Based upon field screening of soil samples collected during drilling, we installed one shallow, four intermediate, and two deep wells as shown on Figure 1.

The most impacted groundwater sample was collected from the deep (50 ft) well DW-2 located on the southwest corner of the main manufacturing building. The concentration of tetrachloroethene (PCE) here was 310 ug/L, which is 100 times the Groundwater Cleanup Target Level (GCTL) of 3 ug/L, and slightly above the natural attenuation default concentration (NADC) of 300 ug/L. The groundwater data show that the groundwater contamination near the former rail spur has decreased in the 35 ft zone since 2011, and the deeper 50 ft zone is only impacted with concentrations slightly above Florida's GCTLs. The direction of groundwater flow in the intermediate (35 ft) zone and the deep (50 ft) zone appears to be generally to the west (with a relatively low gradient).

Progressive has evaluated the data collected during the Limited Phase 2 investigation and offers the following range of costs to complete the site assessment and remediate the site to meet the FDEP's closure criteria under Chapter 62-780, F.A.C. The reasonable "Best" and "Worst" case scenarios and assumptions are described below.

Best Case Scenario

Our best case scenario is based on the following assumptions:

- Groundwater contamination near DW-2 represents the highest concentration on the site.
- Contamination in this aquifer zone decreases over a relatively limited distance (either before the property boundary is reached or not too far off-site).
- Contamination is limited to this aquifer zone (i.e., the contamination does not extend vertically to deeper zones of the Upper Floridan aquifer).

G:\PROJECTS\Tampa - East Hanna Avenue\Correspondence\Fahey 071814.docx

- Completing the Site Assessment Report will involve installation of three deep (50 ft) wells and one deeper (80 ft) well, and only very limited soil sampling.
- The site will be remediated through the use of monitored natural attenuation monitoring (NAM) (i.e., no active groundwater treatment), which will include preparation and approval of a NAM Plan that includes six monitoring wells sampled semiannually.

Worst Case Scenario

Our worst case scenario is based on the following assumptions:

- Groundwater contamination near DW-2 extends to depths of up to 100 ft below land surface in the Floridan Aquifer and is significantly higher at depths greater than 50 ft.
- Contamination in this aquifer zone has resulted in a plume that is relatively large and extends far off-site.
- Contamination is of sufficient magnitude (concentration and extent) that active remediation of the source of contamination on-site is necessary.
- Completing the Site Assessment Report will involve installation of up to five 50 ft deep wells, three 80 ft deep wells, and two 100 ft deep wells.
- Remediation of the site will require a combination of source area groundwater treatment and NAM that includes preparation and agency approval of a Remedial Action Plan (RAP).
- Source remediation would involve chemical oxidation or bioremediation via injections into the subsurface to depths of at least 50 ft.
- Off-site remediation would include NAM for an extended period of time after onsite source reduction.
- Because of the concentrations and extent of groundwater contamination, remediation monitoring will likely take at least 10 years and maybe longer to reach closure criteria.

The cost estimates for these two scenarios are as follows:

Scenario	SAR	RAP/ NAMP	Implementation	Monitoring (Years 1 – 5)	Monitoring (Years 5-10)	Total Cost Estimate	
Best Case	\$75,000	\$7,500		\$100,000		\$182,500	
Worst Case	\$140,000	\$30,000	\$200,000	\$150,000	\$100,000	\$620,000	

Note these cost estimates exclude the following:

- Obtaining a Brownfield Designated Area or a Brownfield Site Rehabilitation Agreement (BSRA).
- Completion and execution of a deed restriction for a conditional closure.
- Post-closure maintenance costs for the paved areas (engineered control).
- Excavation of soils that are not capped, should that be necessary.

G:\PROJECTS\Tampa - East Hanna Avenue\Correspondence\Fahey 071814.docx

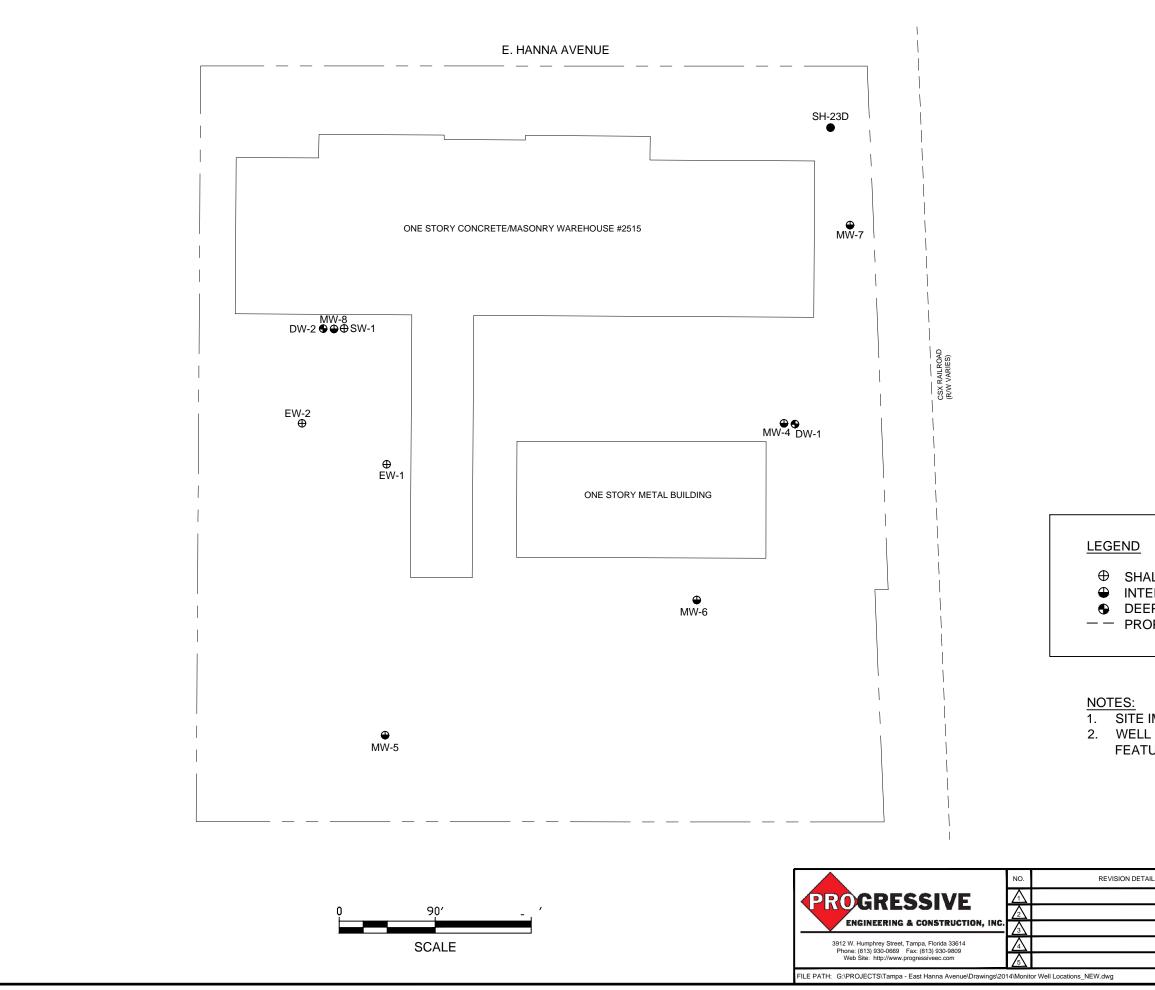
Mr. Dan Fahey July 18, 2014

The full report on our investigation will be completed next week and we will forward it to you as soon as it is done. Please let us know if we can be of further assistance.

Sincerely,

Progressive Engineering & Construction, Inc.

ridget & Morell


Bridget S. Morello, P.E. Principal Engineer

Enclosures

cc: John Fernandez

per

Ğ.∥Nell Tyner, Ph.D., P.G. Senior Scientist

S DATE		DATE	MONITOR WELL LOCATIONS						
			CITY OF TAMPA						
			2515 EAST HANNA AV	ENUE, TAMPA, FL 33610					
			DATE: 07/17/14	DRAWING NUMBER:					
			DRAWN BY: KWC	1					
	SCALE:	1" = 100'	APPROVED BY: GNT						

1. SITE IMAGE OBTAINED FROM CITY OF TAMPA 2. WELL LOCATIONS RELATIVE TO OTHER SITE FEATURES ARE APPROXIMATE.

⊕ SHALLOW MONITORING WELL ➡ INTERMEDIATE MONITORING WELL DEEP MONITORING WELL -- PROPERTY LINE

