WATER ON TAP
what you need to know
Table of Contents

Chapter Page No.
1. A Consumer’s Guide To The Nation’s Drinking Water 1
3. Where Does My Drinking Water Come From And How Is It Treated? 7
4. How Do We Use Drinking Water In Our Homes? 10
5. What’s Being Done To Improve Water Security? 13
6. What Can I Do If There Is A Problem With My Drinking Water? 15
7. How Safe Is The Drinking Water In My Household Well? 18
8. What You Can Do To Protect Your Drinking Water 21

Appendix A: National Primary Drinking Water Standards as of 10/03 23
Appendix B: References 28
Appendix C: Sources of Additional Information 29
Appendix D: Glossary 31
The United States enjoys one of the best supplies of drinking water in the world. Nevertheless, many of us who once gave little or no thought to the water that comes from our taps are now asking the question: “Is my water safe to drink?” While tap water that meets federal and state standards is generally safe to drink, threats to drinking water are increasing. Short-term disease outbreaks and water restrictions during droughts have demonstrated that we can no longer take our drinking water for granted.

Sensitive Subpopulations

Some people may be more vulnerable to contaminants in drinking water than the general population. People undergoing chemotherapy or living with HIV/AIDS, transplant patients, children and infants, the frail elderly, and pregnant women and their fetuses can be particularly at risk for infections.

If you have special health care needs, consider taking additional precautions with your drinking water, and seek advice from your health care provider. For more information, see www.epa.gov/safewater/healthcare/special.html.

You will find information on bottled water and home water treatment units on page 16 of this booklet. You may also contact NSF International, Underwriter’s Laboratory, or the Water Quality Association. Contact information is located in Appendix C.

Consumers have many questions about their drinking water. How safe is my drinking water? What is being done to improve security of public water systems? Where does my drinking water come from, and how is it treated? Do private wells receive the same protection as public water systems? What can I do to help protect my drinking water?

This booklet provides the answers to these and other frequently asked questions.

This booklet also directs you to more detailed sources of information. Often, you will be directed to a page on the EPA website. Additionally, the Safe Drinking Water Hotline is available to answer your questions. Please also see Appendix C for more resources. Refer to the Glossary (Appendix D) for definitions of words in bold font.

What you need to know to protect your family
2. How Safe Is My Drinking Water?

What Law Keeps My Drinking Water Safe?

Congress passed the Safe Drinking Water Act (SDWA) in 1974 to protect public health by regulating the nation’s public drinking water supply and protecting sources of drinking water. SDWA is administered by the U.S. Environmental Protection Agency (EPA) and its state partners.

What Is A Public Water System?

The Safe Drinking Water Act (SDWA) defines a public water system (PWS) as one that serves piped water to at least 25 persons or 15 service connections for at least 60 days each year. There are approximately 161,000 public water systems in the United States. Such systems may be publicly or privately owned. Community water systems (CWSs) are public water systems that serve people year-round in their homes. Most people in the U.S. (268 million) get their water from a community water system. EPA also regulates other kinds of public water systems, including non-community systems.

Highlights of the Safe Drinking Water Act

- Authorizes EPA to set enforceable health standards for contaminants in drinking water
- Requires public notification of water systems violations and annual reports (Consumer Confidence Reports) to customers on contaminants found in their drinking water - www.epa.gov/safewater/CCR
- Establishes a federal-state partnership for regulation enforcement
- Includes provisions specifically designed to protect underground sources of drinking water - www.epa.gov/safewater/uic
- Requires disinfection of surface water supplies, except those with pristine, protected sources
- Establishes a multi-billion-dollar state revolving loan fund for water system upgrades - www.epa.gov/safewater/dwsrf
- Requires an assessment of the vulnerability of all drinking water sources to contamination - www.epa.gov/safewater/protect

— Drinking Water: Past, Present, and Future EPA-816-F-00-002

Public Water Systems

Community Water System (54,000 systems)—A public water system that serves the same people year-round. Most residences are served by Community Water Systems.

Non-Community Water System (approximately 108,000 systems)—A public water system that does not serve the same people year-round. There are two types of non-community systems:

- Non-Transient Non-Community Water System (almost 19,000 systems)—A non-community water system that serves the same people more than six months of the year, but not year-round. For example, a school with its own water supply is considered a non-transient system.

- Transient Non-Community Water System (more than 89,000 systems)—A non-community water system that serves the public but not the same individuals for more than six months. For example, a rest area or a campground may be considered a transient system.
such as those at schools, campgrounds, factories, and restaurants. Private water supplies, such as household wells that serve one or a few homes, are not regulated by EPA. For information on household wells, see “How Safe Is The Drinking Water In My Household Well?” on page 18 of this booklet.

Cost of Making Water Safe Continues to Rise

Much of the existing water infrastructure (underground pipes, treatment plants, and other facilities) was built many years ago. In 1999, EPA conducted the second Drinking Water Infrastructure Needs Survey, and found that drinking water systems will need to invest $150 billion over a 20-year period to ensure clean and safe drinking water.

Will Water Systems Have Adequate Funding In The Future?

Nationwide, drinking water systems have spent hundreds of billions of dollars to build drinking water treatment and distribution systems. From 1995 to 2000, more than $50 billion was spent on capital investments to fund water quality improvements.

With the aging of the nation’s infrastructure, the clean water and drinking water industries face a significant challenge to sustain and advance their achievements in protecting public health. EPA’s Clean Water & Drinking Water Infrastructure Gap Analysis has found that if present levels of spending do not increase, there will be a significant funding gap by the year 2019.

Where Can I Find Information About My Local Water System?

Since 1999, water suppliers have been required to provide annual Consumer Confidence Reports to their customers. These reports are due by July 1 each year, and contain information on contaminants found in the drinking water, possible health effects, and the water’s source. Some Consumer Confidence Reports are available at www.epa.gov/safewater/dwinfo.htm.

Water suppliers must promptly inform you if your water has become contaminated by something that can cause immediate illness. Water suppliers have 24 hours to inform their customers of violations of EPA standards “that have the potential to have serious adverse effects on human health as a result of short-term exposure.” If such a violation occurs, the water system will announce it through the media, and must provide information about the potential adverse effects on human health, steps the system is taking to correct the violation, and the need to use alternative water supplies (such as boiled or bottled water) until the problem is corrected.

Systems will inform customers about violations of less immediate concern in the first water bill sent after the violation, in a Consumer Confidence Report, or by mail within a year. In 1998, states began compiling information on individual systems, so you can evaluate the overall quality of drinking water in your state. Additionally, EPA must compile and summarize the state reports into an annual report on the condition of the nation’s drinking water. To view the most recent annual report, see www.epa.gov/safewater/annual.

How Often Is My Water Supply Tested?

EPA has established pollutant-specific minimum testing schedules for public water systems. To find out how frequently your drinking water is tested, contact your water system or the agency in your state in charge of drinking water.

If a problem is detected, immediate retesting requirements go into effect along with strict instructions about how the system informs the public. Until the system can reliably demonstrate that it is free of problems, the retesting is continued.

In 2001, one out of every four community water systems did not conduct testing or report the results for all of the monitoring required to verify the safety
of their drinking water. Although failure to monitor does not necessarily suggest safety problems, conducting the required reporting is crucial to ensure that problems will be detected. Consumers can help make sure certain monitoring and reporting requirements are met by first contacting their state drinking water agency to determine if their water supplier is in compliance. If the water system is not meeting the requirements, consumers can work with local and state officials and the water supplier to make sure the required monitoring and reporting occurs.

A network of government agencies monitor tap water suppliers and enforce drinking water standards to ensure the safety of public water supplies. These agencies include EPA, state departments of health and environment, and local public health departments.

Nevertheless, problems with local drinking water can, and do, occur.

What Problems Can Occur?

Actual events of drinking water contamination are rare, and typically do not occur at levels likely to pose health concerns. However, as development in our modern society increases, there are growing numbers of activities that can contaminate our drinking water. Improperly disposed-of chemicals, animal and human wastes, wastes injected underground, and naturally occurring substances have the potential to contaminate drinking water. Likewise, drinking water that is not properly treated or disinfected, or that travels through an improperly maintained distribution system, may also pose a health risk. Greater vigilance by you, your water supplier, and your government can help prevent such events in your water supply.

Contaminants can enter water supplies either as a result of human and animal activities, or because they occur naturally in the environment. Threats to your drinking water may exist in your neighborhood, or may occur many miles away. For more information on drinking water threats, see www.epa.gov/safewater.

Common Sources of Pollution

Naturally Occurring: microorganisms (wildlife and soils), radionuclides (underlying rock), nitrates and nitrates (nitrogen compounds in the soil), heavy metals (underground rocks containing arsenic, cadmium, chromium, lead, and selenium), fluoride.

Human Activities: bacteria and nitrates (human and animal wastes—septic tanks and large farms), heavy metals (mining construction, older fruit orchards), fertilizers and pesticides (used by you and others (anywhere crops or lawns are maintained)), industrial products and wastes (local factories, industrial plants, gas stations, dry cleaners, leaking underground storage tanks, landfills, and waste dumps), household wastes (cleaning solvents, used motor oil, paint, paint thinner), lead and copper (household plumbing materials), water treatment chemicals (wastewater treatment plants).
Some typical examples are microbial contamination, chemical contamination from fertilizers, and lead contamination.

Boil Water Notices for Microbial Contaminants

When microorganisms such as those that indicate fecal contamination are found in drinking water, water suppliers are required to issue “Boil Water Notices.” Boiling water for one minute kills the microorganisms that cause disease. Therefore, these notices serve as a precaution to the public.

www.epa.gov/safewater/faq/emerg.html

Microbial Contamination:

The potential for health problems from microbial-contaminated drinking water is demonstrated by localized outbreaks of waterborne disease. Many of these outbreaks have been linked to contamination by bacteria or viruses, probably from human or animal wastes. For example, in 1999 and 2000, there were 39 reported disease outbreaks associated with drinking water, some of which were linked to public drinking water supplies. According to the Environmental Protection Agency (EPA), these outbreaks are a concern because they can be caused by various microorganisms, including viruses, bacteria, and parasites.

Certain pathogens (disease-causing microorganisms), such as *Cryptosporidium*, may occasionally pass through water filtration and disinfection processes in numbers high enough to cause health problems, particularly in vulnerable members of the population. *Cryptosporidium* causes the gastrointestinal disease, cryptosporidiosis, and can cause serious, sometimes fatal, symptoms, especially among sensitive members of the population. (See box on Sensitive Subpopulations on page 1.) A serious outbreak of cryptosporidiosis occurred in 1993 in Milwaukee, Wisconsin, causing more than 400,000 persons to be infected with the disease, and resulting in at least 50 deaths. This was the largest recorded outbreak of waterborne disease in United States history.

Excessive levels of nitrates can cause “blue baby syndrome,” which can be fatal without immediate medical attention.

Chemical Contamination From Fertilizers:

Nitrate, a chemical most commonly used as a fertilizer, poses an immediate threat to infants when it is found in drinking water at levels above the national standard. Nitrates are converted to nitrites in the intestines. Once absorbed into the bloodstream, nitrites prevent hemoglobin from transporting oxygen. (Older children have an enzyme that restores hemoglobin.) Excessive levels can cause “blue baby syndrome,” which can be fatal without immediate medical attention. Infants most at risk for blue baby syndrome are those who are already sick, and while they are sick, consume food that is high in nitrates or drink water or formula mixed with water that is high in nitrates. Avoid using water with high nitrate levels for drinking. This is especially important for infants and young children, nursing mothers, pregnant women and certain elderly people.

Nitrates: Do NOT Boil

Do NOT boil water to attempt to reduce nitrates. Boiling water contaminated with nitrates increases its concentration and potential risk. If you are concerned about nitrates, talk to your health care provider about alternatives to boiling water for baby formula.
Lead Contamination:

Lead, a metal found in natural deposits, is commonly used in household plumbing materials and water service lines. The greatest exposure to lead is swallowing or breathing in lead paint chips and dust. But lead in drinking water can also cause a variety of adverse health effects. In babies and children, exposure to lead in drinking water above the maximum contaminant level can result in delays in physical and mental development, along with slight deficits in attention span and learning abilities. In adults, it can cause increases in blood pressure. Adults who drink this water over many years could develop kidney problems or high blood pressure. Lead is rarely found in source water, but enters tap water through corrosion of plumbing materials. Very old and poorly maintained homes may be more likely to have lead pipes, joints, and solder. However, new homes are also at risk: even legally “lead-free” pipes may contain up to 8 percent lead. These pipes can leave significant amounts of lead in the water for the first several months after their installation. For more information on lead contamination, see www.epa.gov/safewater/contaminants/dw_contamfs/lead.html.

Where Can I Find More Information About My Drinking Water?

Drinking water varies from place to place, depending on the water’s source and the treatment it receives. If your drinking water comes from a community water system, the system will deliver to its customers annual drinking water quality reports (or Consumer Confidence Reports). These reports will tell consumers what contaminants have been detected in their drinking water, how these detection levels compare to drinking water standards, and where their water comes from. The reports must be provided annually before July 1, and, in most cases, are mailed directly to customers’ homes. Contact your water supplier to get a copy of your report, or see if your report is posted online at www.epa.gov/safewater/dwinfo.htm. Your state’s department of health or environment can also be a valuable source of information. For help in locating these agencies, call the Safe Drinking Water Hotline. Further resources can be found in Appendix C. Information on testing household wells is on page 19.

3 The Clean Water and Drinking Water Infrastructure Gap Analysis, EPA 816-R-02-020.
6 25 Years of the Safe Drinking Water Act, 1999.
3. Where Does My Drinking Water Come From And How Is It Treated?

Your drinking water comes from surface water or ground water. The water that systems pump and treat from sources open to the atmosphere, such as rivers, lakes, and reservoirs is known as surface water. Water pumped from wells drilled into underground aquifers, geologic formations containing water, is called ground water. The quantity of water produced by a well depends on the nature of the rock, sand, or soil in the aquifer from which the water is drawn. Drinking water wells may be shallow (50 feet or less) or deep (more than 1,000 feet). More water systems have ground water than surface water as a source (approx. 147,000 v. 14,500), but more people drink from a surface water system (195 million v. 101,400). Large-scale water supply systems tend to rely on surface water resources, while smaller water systems tend to use ground water. Your water utility or public works department can tell you the source of your public water supply.

How Does Water Get To My Faucet?

An underground network of pipes typically delivers drinking water to the homes and businesses served by the water system. Small systems serving just a handful of households may be relatively simple, while large metropolitan systems can be extremely complex—sometimes consisting of thousands of miles of pipes serving millions of people. Drinking water must meet required health standards when it leaves the treatment plant. After treated water leaves the plant, it is monitored within the distribution system to identify and remedy any problems such as water main breaks, pressure variations, or growth of microorganisms.

How Is My Water Treated To Make It Safe?

Water utilities treat nearly 34 billion gallons of water every day. The amount and type of treatment applied varies with the source and quality of the water. Generally, surface water systems require more treatment than ground water systems because they are directly exposed to the atmosphere and runoff from rain and melting snow.

Water suppliers use a variety of treatment processes to remove contaminants from drinking water. These individual processes can be arranged in a “treatment train” (a series of processes applied in a sequence). The most commonly used processes include coagulation (flocculation and sedimentation), filtration, and disinfection. Some water systems also use ion exchange and adsorption. Water utilities select the treatment combination most appropriate to treat the contaminants found in the source water of that particular system.

Coagulation (Flocculation & Sedimentation):

Flocculation: This step removes dirt and other particles suspended in the water. Alum and iron salts or synthetic organic polymers are added to the water to form tiny sticky particles called “floc,” which attract the dirt particles.

All sources of drinking water contain some naturally occurring contaminants. At low levels, these contaminants generally are not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and may even have nutritional value at low levels.
Sedimentation: The flocculated particles then settle naturally out of the water.

Filtration:

Many water treatment facilities use filtration to remove all particles from the water. Those particles include clays and silts, natural organic matter, precipitates from other treatment processes in the facility, iron and manganese, and microorganisms. Filtration clarifies the water and enhances the effectiveness of disinfection.

Water Treatment Plant

Follow a drop of water from the source through the treatment process. Water may be treated differently in different communities depending on the quality of the water which enters the plant. Groundwater is located underground and typically requires less treatment than water from lakes, rivers, and streams.

Lake or Reservoir

Coagulation removes dirt and other particles suspended in water. Alum and other chemicals are added to water to form tiny sticky particles called “floc” which attract the dirt particles. The combined weight of the dirt and the alum (floc) become heavy enough to sink to the bottom during sedimentation.

Sedimentation:

The heavy particles (floc) settle to the bottom and the clear water moves to filtration.

Disinfection: A small amount of chlorine is added or some other disinfection method is used to kill any bacteria or microorganisms that may be in the water.

Filtration: The water passes through filters, some made of layers of sand, gravel, and charcoal that help remove even smaller particles.

Storage: Water is placed in a closed tank or reservoir for disinfection to take place. The water then flows through pipes to homes and businesses in the community.

Source: AWWA Drinking Water Week Blue Thumb Kit
Disinfection:

Disinfection of drinking water is considered to be one of the major public health advances of the 20th century. Water is often disinfected before it enters the distribution system to ensure that dangerous microbial contaminants are killed. Chlorine, chlorinates, or chlorine dioxides are most often used because they are very effective disinfectants, and residual concentrations can be maintained in the water system.

Why Is My Water Bill Rising?

The cost of drinking water is rising as suppliers meet the needs of aging infrastructure, comply with public health standards, and expand service areas. In most cases, these increasing costs have caused water suppliers to raise their rates. However, despite rate increases, water is generally still a bargain compared to other utilities, such as electricity and phone service. In fact, in the United States, combined water and sewer bills average only about 0.5 percent of household income.²

¹ Protect Your Drinking Water, 2002.

Disinfection Byproducts

Disinfection of drinking water is one of the major public health advances of the 20th century. However, sometimes the disinfectants themselves can react with naturally occurring materials in the water to form unintended byproducts, which may pose health risks. EPA recognizes the importance of removing microbial contaminants while simultaneously protecting the public from disinfection byproducts, and has developed regulations to limit the presence of these byproducts. For more information, see www.epa.gov/safewater/mdbp.html.

Water System Filtration Tank

Water passes through charcoal, sand, and gravel layers in a water system's filtration tank.
4. How Do We Use Drinking Water In Our Homes?

We take our water supplies for granted, yet they are limited. Only one percent of all the world’s water can be used for drinking. Nearly 97 percent of the world’s water is salty or otherwise undrinkable, and the other two percent is locked away in ice caps and glaciers. There is no “new” water: whether our source water is a stream, river, lake, spring, or well, we are using the same water the dinosaurs used millions of years ago.

How Much Water Do Homes In The U.S. Use Compared To Other Countries?

Americans use much more water each day than individuals in both developed and undeveloped countries: For example, the average European uses 53 gallons; the average Sub-Saharan citizen, 3-5 gallons.4

Water efficiency plays an important role in protecting water sources and improving water quality. By using water wisely, we can save money and help the environment. Water efficiency means using less water to provide the same benefit. Using water-saving techniques could save you hundreds of dollars each year, while also reducing the amount of pollutants entering our waterways.

How Do Drinking Water Utilities Conserve Water?

Water utilities forecast water source availability, growth in population, and water demand to ensure adequate future water supplies during normal conditions, as well as periods of drought. When water shortages are predicted or experienced, water utilities have many options for conserving water. Temporary cutbacks or permanent operating adjustments can help conserve water.

Temporary cutbacks may include:
• Reduction of system-wide operating pressure, and
• Water use bans, restrictions, and rationing.

The average American uses about 90 gallons of water each day in the home, and each American household uses approximately 107,000 gallons of water each year.1 For the most part, we use water treated to meet drinking water standards to flush toilets, water lawns, and wash dishes, clothes, and cars. In fact, 50-70 percent of home water is used for watering lawns and gardens.2 Nearly 14 percent of the water a typical homeowner pays for is never even used—it leaks down the drain.3

How Much Water Do Homes In The U.S. Use Compared To Other Countries?

How Do Drinking Water Utilities Conserve Water?

Water efficiency plays an important role in protecting water sources and improving water quality. By using water wisely, we can save money and help the environment. Water efficiency means using less water to provide the same benefit. Using water-saving techniques could save you hundreds of dollars each year, while also reducing the amount of pollutants entering our waterways.

How Do Drinking Water Utilities Conserve Water?

Water utilities forecast water source availability, growth in population, and water demand to ensure adequate future water supplies during normal conditions, as well as periods of drought. When water shortages are predicted or experienced, water utilities have many options for conserving water. Temporary cutbacks or permanent operating adjustments can help conserve water.

Temporary cutbacks may include:
• Reduction of system-wide operating pressure, and
• Water use bans, restrictions, and rationing.

Common Household Uses of Drinking Water* (*Gallons per Capita per Day)

- Bathing, 20 gpcd
- Toilet Flushing, 24 gpcd
- Drinking and Cooking, 2 gpcd
- Garbage Disposal, 1 gpcd
- Dishwasher, 4 gpcd
- Laundry, 8.5 gpcd
- Car Washing, 2.5 gpcd
- Lawn Watering and Pools, 25 gpcd

Source: Van Der Leeden, F., L. Iroese, and D. K. Iodd.
Permanent conservation measures may include:
- Subsidizing use of water-efficient faucets, toilets, and showerheads,
- Public education and voluntary use reduction,
- Billing practices that impose higher rates for higher amounts of water use,
- Building codes that require water-efficient fixtures and appliances,
- Leak detection surveys and meter testing, repair, and replacement, and
- Reduction in use and increase in recycling of industrial water.

How Can Businesses Conserve Water?

The industrial and commercial sectors can conserve water through recycling and waste reduction. Industry has implemented conservation measures to comply with state and federal water pollution controls. Evaluation of industrial plant data may show that a particular process or manufacturing step uses the most water or causes the greatest contamination. Such areas can be targeted for water conservation. Also, water that is contaminated by one process may be usable in other plant processes that do not require high-quality water.

How Can I Conserve Water?

The national average cost of water is $2.00 per 1,000 gallons. The average American family spends about $474 each year on water and sewage charges.5 American households spend an additional $230 per year on water heating costs.6 By replacing appliances such as the dishwasher and inefficient fixtures such as toilets and showerheads, you can save a substantial amount each year in water, sewage, and energy costs.

There are many ways to save water in and around your home. Here are the five that might get the best results:

Ways To Save Water At Home*
(*Water Savings as Percent of Total Interior Water Use)

- Low-Flow Showerheads (or Flow Restrictors), 12 percent
- Low-Water Use Clothes Washers, 5 percent
- Low-Water Use Toilets (or Plastic Bottles or Water Dams in Toilet Reservoir), 18 percent
- Low-Flow Aerators on Faucets (or Replacement Faucets), 2 percent
- Low-Water Use Dishwasher, 4 percent
- Insulation on Hot Water Lines, 4 percent

Source: Corbitt, Robert A.
Standard Handbook of Environmental Engineering,
• Stop Leaks.
• Replace Old Toilets with models that use 1.6 gallons or less per flush.
• Replace Old Clothes Washers with EPA Energy Star certified models.
• Plant the Right Kind of Garden that requires less water.
• Provide Only the Water Plants Need.

For more information on ways to conserve water in the home, see www.epa.gov/water/waterefficiency.html or www.h2ouse.org.

1 Water Trivia Facts, EPA 80-F-95-001.
2 AWWA Stats on Tap.
4 The Use of Water Today, World Water Council.
5 Investing in America’s Water Infrastructure, 2002.

Nearly 14 percent of the water a typical homeowner pays for is never even used—it leaks down the drain.

Using Water Wisely in the Home, 2002
5. What’s Being Done To Improve Water Security?

What Security Measures Are In Place To Protect Water Systems?

Drinking water utilities today find themselves facing new responsibilities due to concerns over water system security and counter-terrorism. EPA is committed to the safety of public drinking water supplies and has taken numerous steps to work with utilities, other government agencies, and law enforcement to minimize threats.

The Public Health Security and Bioterrorism Preparedness and Response Act of 2002 requires that all community water systems serving more than 3,300 people evaluate their susceptibility to potential threats and identify corrective actions. EPA has provided assistance to help utilities with these Vulnerability Assessments by giving direct grants to large systems, supporting self-assessment tools, and providing technical help and training to small and medium utilities. For more information on water system security, see www.epa.gov/safewater/security.

How Can I Help Protect My Drinking Water?

Local drinking water and wastewater systems may be targets for terrorists and other would-be criminals wishing to disrupt and cause harm to your community water supplies or wastewater facilities.

Because utilities are often located in isolated areas, drinking water sources and wastewater collection systems may cover large areas that are difficult to secure and patrol. Residents can be educated to notice and report any suspicious activity in and around local water utilities. Any residents interested in protecting their water resources and community as a whole can join together with law enforcement, neighborhood watch groups, water suppliers, wastewater operators, and other local public health officials. If you witness suspicious activities, report them to your local law enforcement authorities.

Examples of suspicious activity might include:

- People climbing or cutting a utility fence
- People dumping or discharging material to a water reservoir
• Unidentified truck or car parked or loitering near waterway or facilities for no apparent reason

• Suspicious opening or tampering with manhole covers, fire hydrants, buildings, or equipment

Do not confront strangers. Instead report suspicious activities to local authorities.

When reporting an incident:
• State the nature of the incident
• Identify yourself and your location
• Identify location of activity
• Describe any vehicle involved (color, make, model, plate number)
• Describe the participants (how many, sex, race, color of hair, height, weight, clothing)

For emergencies, dial 9-1-1 or other local emergency response numbers.

For more information on water security, visit: www.epa.gov/safewater/security

• People climbing or on top of water tanks
• People photographing or videotaping utility facilities, structures or equipment
• Strangers hanging around locks or gates

Report suspicious activity to local authorities
6. What Can I Do If There Is A Problem With My Drinking Water?

Local incidents, such as spills and treatment problems, can lead to short-term needs for alternative water supplies or in-home water treatment. In isolated cases, individuals may need to rely on alternative sources for the long term, due to their individual health needs or problems with obtaining new drinking water supplies.

What Alternative Sources Of Water Are Available?

Bottled water is sold in supermarkets and convenience stores. Some companies lease or sell water dispensers or bubblers and regularly deliver large bottles of water to homes and businesses. It is expensive compared to water from a public water system. The bottled water quality varies among brands, because of the variations in the source water used, costs, and company practices.

The U.S. Food and Drug Administration (FDA) regulates bottled water used for drinking. While most consumers assume that bottled water is at least as safe as tap water, there are still potential risks. Although required to meet the same safety standards as public water supplies, bottled water does not undergo the same testing and reporting as water from a treatment facility. Water that is bottled and sold in the same state may not be subject to any federal standards at all. Those with compromised immune systems may want to read bottled water labels to make sure more stringent treatments have been used, such as reverse osmosis, distillation, UV radiation, or filtration by an absolute 1 micron filter.

Check with NSF International to see if your bottled water adheres to FDA and international drinking water standards. The International Bottled Water Association can also provide information on which brands adhere to even more stringent requirements. Contact information is listed in Appendix C.

Can I Do Anything In My House To Improve The Safety Of My Drinking Water?

Most people do not need to treat drinking water in their home to make it safe. However, a home water treatment unit can improve water’s taste, or provide a factor of safety for those people more vulnerable to waterborne disease. There are different options for home treatment systems. Point-of-use (POU) systems treat water at a single tap. Point-of-entry (POE) systems treat water used throughout the house. POU systems can be installed in various places in the home, including the counter top, the faucet itself, or under the sink. POE systems are installed where the water line enters the house.

POU and POE devices are based on various contaminant removal technologies. Filtration, ion exchange, reverse osmosis, and distillation are some of the treatment methods used. All types of units are generally available from retailers, or by mail order. Prices can reach well into the hundreds and sometimes thousands of dollars, and depending on the method and location of installation, plumbing can also add to the cost.
<table>
<thead>
<tr>
<th>Treatment Device</th>
<th>What It Does To Water</th>
<th>Treatment Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated Carbon Filter</td>
<td>/ Adsorbs organic contaminants that cause taste and odor problems. / Some designs remove chlorination byproducts; / Some types remove cleaning solvents and pesticides</td>
<td>Is not efficient in removing metals such as lead and copper. Does not remove nitrate, bacteria or dissolved minerals</td>
</tr>
<tr>
<td>Ion Exchange Unit</td>
<td>/ Removes minerals, particularly calcium and magnesium that make water "hard" / Some designs remove radium and barium / Removes fluoride</td>
<td>If water has oxidized iron or iron bacteria, the ion-exchange resin will become coated or clogged and lose its softening ability</td>
</tr>
<tr>
<td>(with activated alumina)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Osmosis Unit</td>
<td>/ Removes nitrates, sodium, other dissolved inorganics and organic compounds / Removes foul tastes, smells or colors / May also reduce the level of some pesticides, dioxins and chloroform and petrochemicals</td>
<td>Does not remove all inorganic and organic contaminants</td>
</tr>
<tr>
<td>(with carbon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distillation Unit</td>
<td>/ Removes nitrates, bacteria, sodium, hardness, dissolved solids, most organic compounds, heavy metals, and radionuclides / Kills bacteria</td>
<td>Does not remove some volatile organic contaminants, certain pesticides and volatile solvents Bacteria may recolonize on the cooling coils during inactive periods</td>
</tr>
</tbody>
</table>

Activated carbon filters adsorb organic contaminants that cause taste and odor problems. Depending on their design, some units can remove chlorination byproducts, some cleaning solvents, and pesticides. To maintain the effectiveness of these units, the carbon canisters must be replaced periodically. Activated carbon filters are not efficient in removing metals such as lead and copper.

Because ion exchange units can be used to remove minerals from your water, particularly calcium and magnesium, they are sold for water softening. Some ion exchange softening units remove radium and barium from water. Ion exchange systems that employ activated alumina are used to remove fluoride and arsenate from water. These units must be regenerated periodically with salt.

Reverse osmosis treatment units generally remove a more diverse list of contaminants than other systems. They can remove nitrates, sodium, other dissolved inorganics, and organic compounds.

Distillation units boil water and condense the resulting steam to create distilled water. Depending on their design, some of these units may allow vaporized organic contaminants to condense back into the product water, thus minimizing the removal of organics.

You may choose to boil your water to remove microbial contaminants. Keep in mind that boiling reduces
the volume of water by about 20 percent, thus concentrating those contaminants not affected by the temperature of boiling water, such as nitrates and pesticides. For more information on boiling water, see page 5 of this booklet.

No one unit can remove everything. Have your water tested by a certified laboratory prior to purchasing any device. Do not rely on the tests conducted by salespeople that want to sell you their product.

Where Can I Learn More About Home Treatment Systems?

Your local library has articles, such as those found in consumer magazines, on the effectiveness of these devices.

Maintaining Treatment Devices

All POU and POE treatment units need maintenance to operate effectively. If they are not maintained properly, contaminants may accumulate in the units and actually make your water worse. In addition, some vendors may make claims about their effectiveness that have no merit. Units are tested for their safety and effectiveness by two organizations, NSF International and Underwriters Laboratory. In addition, the Water Quality Association represents the household, commercial, industrial and small community treatment industry and can help you locate a professional that meets their code of ethics. EPA does not test or certify these treatment units.

This treatment device is for point of use (POU). For more information on different types of devices contact NSF International, Underwriters Laboratory, or the Water Quality Association See Appendix C for contact information.
7. How Safe Is The Drinking Water In My Household Well?

EPA regulates public water systems; it does not have the authority to regulate private wells. Approximately 15 percent of Americans rely on their own private drinking water supplies (Drinking Water from Household Wells, 2002), and these supplies are not subject to EPA standards. Unlike public drinking water systems serving many people, they do not have experts regularly checking the water’s source and its quality before it is sent to the tap. These households must take special precautions to ensure the protection and maintenance of their drinking water supplies.

Drinking Water from Household Wells is an EPA publication available to specifically address special concerns of a private drinking water supply. To learn more, or to obtain a copy, visit www.epa.gov/safewater/privatewells, or call the Safe Drinking Water Hotline.

How Much Risk Can I Expect?

The risk of having problems depends on how good your well is—how well it was built and located, and how well you maintain it. It also depends on your local environment. That includes the quality of the aquifer from which your water is drawn and the human activities going on in your area that can affect your well.

Several sources of pollution are easy to spot by sight, taste, or smell. However, many serious problems can be found only by testing your water. Knowing the possible threats in your area will help you decide the kind of tests you may need.

What Should I Do?

There are six basic steps you can take to help protect your private drinking water supply:

1. Identify potential problem sources.
2. Talk with local experts.
3. Have your water tested periodically.
4. Have the test results interpreted and explained clearly.
5. Set and follow a regular maintenance schedule for your well, and keep up-to-date records.
6. Immediately remedy any problems.

Identify Potential Problem Sources

Understanding and spotting possible pollution sources is the first step to safeguarding your drinking water. If your drinking water comes from a well, you may also have a septic system. Septic systems and other on-site wastewater disposal systems are major potential sources of contamination of private water supplies if they are poorly maintained or located improperly, or if they are used for disposal of toxic chemicals. Information on septic systems is available from local health departments, state agencies, and the National Small Flows Clearinghouse (www.epa.gov/owm/mab/smcomm/nsfc.htm) at (800) 624-8301. A septic system design manual and guidance on system maintenance are available from EPA (www.epa.gov/OW-OWM.html/mtb/decent/homeowner.htm).
Talk With Local Experts

Ground water conditions vary greatly from place to place, and local experts can give you the best information about your drinking water supply. Some examples are your health department’s “sanitarian,” local water-well contractors, public water system officials, county extension agents of the Natural Resources Conservation Service (NRCS), local or county planning commissions, and your local library.

Have Your Water Tested Periodically

Test your water every year for total **coliform** bacteria, nitrates, total dissolved solids, and pH levels. If you suspect other contaminants, test for these as well. As the tests can be expensive, limit them to possible problems specific to your situation. Local experts can help you identify these contaminants. You should also test your water after replacing or repairing any part of the system, or if you notice any change in your water’s look, taste, or smell.

Often, county health departments perform tests for bacteria and nitrates. For other substances, health departments, environmental offices, or county governments should have a list of state-certified laboratories. Your State Laboratory Certification Officer can also provide you with this list. Call the Safe Drinking Water Hotline for the name and number of your state’s certification officer. Any laboratory you use should be certified to do drinking water testing.

Have Your Test Results Interpreted And Explained Clearly

Compare your well’s test results to federal and state drinking water standards (see Appendix A, or visit www.epa.gov/safewater/mcl.html or call the Safe Drinking Water Hotline). You may need to consult experts to aid you in understanding your results, such as the state agency that licenses water well contractors, your local health department, or your state’s drinking water program.
Set A Regular Maintenance Schedule For Your Well And Your Septic System

Proper well and septic system construction and continued maintenance are keys to the safety of your water supply. Your state water well and septic system contractor licensing agency, local health department, or local public water system professional can provide information on well construction. Make certain your contractors are licensed by the state, if required, or certified by the National Ground Water Association.

Maintain your well, fixing problems before they reach crisis levels, and keep up-to-date records of well installation and repairs, as well as plumbing and water costs. Protect your own well area from contamination.

Immediately Remedy Any Problems

If you find that your well water is contaminated, fix the problem as soon as possible. Consider connecting into a nearby community water system, if one is available. You may want to install a water treatment device to remove impurities. Information on these devices is provided on page 16. If you connect to a public water system, remember to close your well properly.

After A Flood—Concerns And Advisories

- Stay away from well pump to avoid electric shock.
- Do not drink or wash from a flooded well.
- Pump the well until water runs clear.
- If water does not run clear, contact the county or state health department or extension service for advice.

Animal waste can contaminate your water supply
8. What You Can Do To Protect Your Drinking Water

Drinking water protection is a shared responsibility. Many actions are underway to protect our nation’s drinking water, and there are many opportunities for citizens to become involved.

Be Involved!

EPA activities to protect drinking water include setting drinking water standards and overseeing the work of states that enforce federal standards—or stricter ones set by the individual state. EPA holds many public meetings on issues ranging from proposed drinking water standards to the development of databases. You can also comment on proposed drafts of other upcoming EPA documents. A list of public meetings and regulations open for comment can be found at www.epa.gov/safewater/pubinput/html.

Be Informed!

• Read the annual Consumer Confidence Report provided by your water supplier. Some Consumer Confidence Reports are available at www.epa.gov/safewater/dwinfo.htm.

• Use information from your state’s Source Water Assessment to learn about potential threats to your water source.

• If you are one of the 15 percent of Americans who uses a private source of drinking water—such as a well, cistern, or spring—find out what activities are taking place in your watershed that may impact your drinking water; talk to local experts/test your water periodically; and maintain your well properly.

• Find out if the Clean Water Act standards for your drinking water source are intended to protect water for drinking, in addition to fishing and swimming.

Be Observant!

• Look around your watershed and look for announcements in the local media about activities that may pollute your drinking water.

• Form and operate a citizens watch network within your community to communicate regularly with law enforcement, your public water supplier and wastewater operator. Communication is key to a safer community!

• Be alert. Get to know your water/wastewater utilities, their vehicles, routines and their personnel.

• Become aware of your surroundings. This will help you to recognize suspicious activity as opposed to normal daily activities.

Other Ways To Get Involved

• Attend public hearings on new construction, storm water permitting, and town planning.

• Keep your public officials accountable by asking to see their environmental impact statements.

• Ask questions about any issue that may affect your water source.

• Participate with your government and your water system as they make funding decisions.

• Volunteer or help recruit volunteers to participate in your community’s contaminant monitoring activities.

• Help ensure that local utilities that protect your water have adequate resources to do their job.
Don’t Contaminate!

- Reduce paved areas: use permeable surfaces that allow rain to soak through, not run off.
- Reduce or eliminate pesticide application: test your soil before applying chemicals, and use plants that require little or no water, pesticides, or fertilizers.
- Reduce the amount of trash you create: reuse and recycle.
- Recycle used oil: 1 quart of oil can contaminate 2 million gallons of drinking water—take your used oil and antifreeze to a service station or recycling center.
- Take the bus instead of your car one day a week: you could prevent 33 pounds of carbon dioxide emissions each day.
- Keep pollutants away from boat marinas and waterways: keep boat motors well-tuned to prevent leaks, select nontoxic cleaning products and use a drop cloth, and clean and maintain boats away from the water.

For more information on how you can help protect your local drinking water source, call the Safe Drinking Water Hotline, or check www.epa.gov/safewater/publicoutreach. Additional resources are listed in Appendix C.

Stormwater runoff threatens our sources of drinking water. As this water washes over roofs, pavement, farms and grassy areas, it picks up fertilizers, pesticides and litter, and deposits them in surface water and ground water. Here are some other threats to our drinking water:

Every year:

- We apply 67 million pounds of pesticides that contain toxic and harmful chemicals to our lawns.
- We produce more than 230 million tons of municipal solid water—approximately five pounds of trash or garbage per person per day—that contain bacteria, nitrates, viruses, synthetic detergents, and household chemicals.
- Our more than 12 million recreational and houseboats and 10,000 boat marinas release solvents, gasoline, detergents, and raw sewage directly into our rivers, lakes and streams.
Appendix A: National Primary Drinking Water Standards as of 10/03

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL or TT¹ (mg/L)²</th>
<th>Potential health effects from exposure above the MCL</th>
<th>Common sources of contaminant in drinking water</th>
<th>Public Health Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC</td>
<td>Acrylamide</td>
<td>Nervous system or blood problems; increased risk of cancer</td>
<td>Added to water during sewage/wastewater treatment</td>
<td>zero</td>
</tr>
<tr>
<td>OC</td>
<td>Alachlor</td>
<td>0.002 Eye, liver, kidney or spleen problems; anemia; increased risk of cancer</td>
<td>Runoff from herbicide used on row crops</td>
<td>zero</td>
</tr>
<tr>
<td>ROC</td>
<td>Alpha particles</td>
<td>15 picocuries per Liter (pCi/L) Increased risk of cancer</td>
<td>Erosion of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation</td>
<td>zero</td>
</tr>
<tr>
<td>IOC</td>
<td>Antimony</td>
<td>0.006 Increase in blood cholesterol; decrease in blood sugar</td>
<td>Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder</td>
<td>0.006</td>
</tr>
<tr>
<td>IOC</td>
<td>Arsenic</td>
<td>0.010 as of 1/23/06 Skin damage or problems with circulatory systems, and may have increased risk of getting cancer</td>
<td>Erosion of natural deposits; runoff from orchards; runoff from glass & electronics production wastes</td>
<td>0</td>
</tr>
<tr>
<td>IOC</td>
<td>Asbestos (fibers >10 micrometers)</td>
<td>7 million fibers per Liter (MFL) Increased risk of developing benign intestinal polyps</td>
<td>Decay of asbestos cement in water mains; erosion of natural deposits</td>
<td>7 MFL</td>
</tr>
<tr>
<td>OC</td>
<td>Atrazine</td>
<td>0.003 Cardiovascular system or reproductive problems</td>
<td>Runoff from herbicide used on row crops</td>
<td>0.003</td>
</tr>
<tr>
<td>IOC</td>
<td>Barium</td>
<td>2 Increase in blood pressure</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits</td>
<td>2</td>
</tr>
<tr>
<td>OC</td>
<td>Benzene</td>
<td>0.005 Anemia; decrease in blood platelets; increased risk of cancer</td>
<td>Discharge from factories; leaching from gas storage tanks and landfills</td>
<td>zero</td>
</tr>
<tr>
<td>OC</td>
<td>Benzo(a)pyrene (PAHs)</td>
<td>0.0002 Reproductive difficulties; increased risk of cancer</td>
<td>Leaching from linings of water storage tanks and distribution lines</td>
<td>zero</td>
</tr>
<tr>
<td>IOC</td>
<td>Beryllium</td>
<td>0.004 Intestinal lesions</td>
<td>Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries</td>
<td>0.004</td>
</tr>
<tr>
<td>R</td>
<td>Beta particles and photon emitters</td>
<td>4 millirems per year Increased risk of cancer</td>
<td>Decay of natural and man-made deposits of certain minerals that are radioactive and may emit forms of radiation known as photons and beta radiation</td>
<td>zero</td>
</tr>
<tr>
<td>DBP</td>
<td>Bromate</td>
<td>0.010 Increased risk of cancer</td>
<td>Byproduct of drinking water disinfection</td>
<td>zero</td>
</tr>
<tr>
<td>IOC</td>
<td>Cadmium</td>
<td>0.005 Kidney damage</td>
<td>Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints</td>
<td>0.005</td>
</tr>
<tr>
<td>OC</td>
<td>Carbofuran</td>
<td>0.04 Problems with blood, nervous system, or reproductive system</td>
<td>Leaching of soil fumigant used on rice and alfalfa</td>
<td>0.04</td>
</tr>
<tr>
<td>OC</td>
<td>Carbon tetrachloride</td>
<td>0.005 Liver problems; increased risk of cancer</td>
<td>Discharge from chemical plants and other industrial activities</td>
<td>zero</td>
</tr>
<tr>
<td>D</td>
<td>Chloramines (as Cl₂)</td>
<td>MRDL=4.01 Eye/nose irritation; stomach discomfort; anemia</td>
<td>Water additive used to control microbes</td>
<td>MRDLG=41</td>
</tr>
</tbody>
</table>

Legend
- **D**: Disinfectant
- **IOC**: Inorganic Chemical
- **OC**: Organic Chemical
- **DBP**: Disinfection Byproduct
- **M**: Microorganism
- **R**: Radionuclides

www.epa.gov/safewater

SDW Hotline: 800-426-4791
<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL or TT(^1) (mg/L)(^2)</th>
<th>Potential health effects from exposure above the MCL</th>
<th>Common sources of contaminant in drinking water</th>
<th>Public Health Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC Chloroform</td>
<td>0.002</td>
<td>Liver or nervous system problems; increased risk of cancer</td>
<td>Residue of banned termicide</td>
<td>zero</td>
</tr>
<tr>
<td>D Chlorine (as Cl(_2))</td>
<td>MRDL=4.0(^1)</td>
<td>Eye/nose irritation; stomach discomfort</td>
<td>Water additive used to control microbes</td>
<td>MRDLG=4(^1)</td>
</tr>
<tr>
<td>D Chlorine dioxide (as ClO(_2))</td>
<td>MRDL=0.8(^1)</td>
<td>Anemia; infants & young children: nervous system effects</td>
<td>Water additive used to control microbes</td>
<td>MRDLG=0.8(^1)</td>
</tr>
<tr>
<td>DBP Chlorite</td>
<td>1.0</td>
<td>Anemia; infants & young children: nervous system effects</td>
<td>Byproduct of drinking water disinfection</td>
<td>0.8</td>
</tr>
<tr>
<td>OC Chlorobenzene</td>
<td>0.1</td>
<td>Liver or kidney problems</td>
<td>Discharge from chemical and agricultural chemical factories</td>
<td>0.1</td>
</tr>
<tr>
<td>IOC Chromium (total)</td>
<td>0.1</td>
<td>Allergic dermatitis</td>
<td>Discharge from steel and pulp mills; erosion of natural deposits</td>
<td>0.1</td>
</tr>
<tr>
<td>IOC Copper</td>
<td>TT(^3); Action Level = 1.3</td>
<td>Short-term exposure: Gastrointestinal distress. Long-term exposure: Liver or kidney damage. People with Wilson's Disease should consult their personal doctor if the amount of copper in their water exceeds the action level</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
<td>1.3</td>
</tr>
<tr>
<td>M Cryptosporidium</td>
<td>TT(^3)</td>
<td>Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)</td>
<td>Human and animal fecal waste</td>
<td>zero</td>
</tr>
<tr>
<td>IOC Cyanide (as free cyanide)</td>
<td>0.2</td>
<td>Nerve damage or thyroid problems</td>
<td>Discharge from steel/metal factories; discharge from plastic and fertilizer factories</td>
<td>0.2</td>
</tr>
<tr>
<td>OC 2,4-D</td>
<td>0.07</td>
<td>Kidney, liver, or adrenal gland problems</td>
<td>Runoff from herbicide used on row crops</td>
<td>0.07</td>
</tr>
<tr>
<td>OC Dalapon</td>
<td>0.2</td>
<td>Minor kidney changes</td>
<td>Runoff from herbicide used on rights of way</td>
<td>0.2</td>
</tr>
<tr>
<td>OC 1,2-Dibromo-3-chloropropane (DBCP)</td>
<td>0.0002</td>
<td>Reproductive difficulties; increased risk of cancer</td>
<td>Runoff from leaching from soil fumigant used on soybeans, cotton, pine-apples, and orchards</td>
<td>zero</td>
</tr>
<tr>
<td>OC o-Dichlorobenzene</td>
<td>0.6</td>
<td>Liver, kidney, or circulatory system problems</td>
<td>Discharge from industrial chemical factories</td>
<td>0.6</td>
</tr>
<tr>
<td>OC p-Dichlorobenzene</td>
<td>0.075</td>
<td>Anemia; liver, kidney or spleen damage; changes in blood</td>
<td>Discharge from industrial chemical factories</td>
<td>0.075</td>
</tr>
<tr>
<td>OC 1,2-Dichloroethane</td>
<td>0.005</td>
<td>Increased risk of cancer</td>
<td>Discharge from industrial chemical factories</td>
<td>zero</td>
</tr>
<tr>
<td>OC 1,1-Dichloroethane</td>
<td>0.007</td>
<td>Liver problems</td>
<td>Discharge from industrial chemical factories</td>
<td>0.007</td>
</tr>
<tr>
<td>OC cis-1,2-Dichloroethylene</td>
<td>0.07</td>
<td>Liver problems</td>
<td>Discharge from industrial chemical factories</td>
<td>0.07</td>
</tr>
<tr>
<td>OC trans-1,2-Dichloroethylene</td>
<td>0.1</td>
<td>Liver problems</td>
<td>Discharge from industrial chemical factories</td>
<td>0.1</td>
</tr>
<tr>
<td>OC Dichloromethane</td>
<td>0.005</td>
<td>Liver problems; increased risk of cancer</td>
<td>Discharge from drug and chemical factories</td>
<td>zero</td>
</tr>
<tr>
<td>OC 1,2-Dichloropropane</td>
<td>0.005</td>
<td>Increased risk of cancer</td>
<td>Discharge from industrial chemical factories</td>
<td>zero</td>
</tr>
<tr>
<td>OC Di(2-ethylhexyl) adipate</td>
<td>0.4</td>
<td>Weight loss, liver problems, or possible reproductive difficulties</td>
<td>Discharge from chemical factories</td>
<td>0.4</td>
</tr>
<tr>
<td>OC Di(2-ethylhexyl) phthalate</td>
<td>0.006</td>
<td>Reproductive difficulties; liver problems; increased risk of cancer</td>
<td>Discharge from rubber and chemical factories</td>
<td>zero</td>
</tr>
<tr>
<td>OC Dinoseb</td>
<td>0.007</td>
<td>Reproductive difficulties</td>
<td>Runoff from herbicide used on soybeans and vegetables</td>
<td>0.007</td>
</tr>
<tr>
<td>Contaminant</td>
<td>MCL or TT(^1) (mg/L)(^2)</td>
<td>Potential health effects from exposure above the MCL</td>
<td>Common sources of contaminant in drinking water</td>
<td>Public Health Goal</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>OC Dioxin (2,3,7,8-TCDD)</td>
<td>0.00000003</td>
<td>Reproductive difficulties; increased risk of cancer</td>
<td>Emissions from waste incineration and other combustion; discharge from chemical factories</td>
<td>zero</td>
</tr>
<tr>
<td>OC Diquat</td>
<td>0.02</td>
<td>Cataracts</td>
<td>Runoff from herbicide use</td>
<td>0.02</td>
</tr>
<tr>
<td>OC Endothall</td>
<td>0.1</td>
<td>Stomach and intestinal problems</td>
<td>Runoff from herbicide use</td>
<td>0.1</td>
</tr>
<tr>
<td>OC Endrin</td>
<td>0.002</td>
<td>Liver problems</td>
<td>Residue of banned insecticide</td>
<td>0.002</td>
</tr>
<tr>
<td>OC Epichlorohydrin TT(^6)</td>
<td>Increased cancer risk, and over a long period of time, stomach problems</td>
<td>Discharge from industrial chemical factories; an impurity of some water treatment chemicals</td>
<td>zero</td>
<td></td>
</tr>
<tr>
<td>OC Ethylbenzene</td>
<td>0.7</td>
<td>Liver or kidney problems</td>
<td>Discharge from petroleum refineries</td>
<td>0.7</td>
</tr>
<tr>
<td>OC Ethylene dibromide</td>
<td>0.00005</td>
<td>Problems with liver, stomach, reproductive system, or kidneys; increased risk of cancer</td>
<td>Discharge from petroleum refineries</td>
<td>zero</td>
</tr>
<tr>
<td>IOC Fluoride</td>
<td>4.0</td>
<td>Bone disease (pain and tenderness of the bones); children may get mottled teeth</td>
<td>Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories</td>
<td>4.0</td>
</tr>
<tr>
<td>M Giardia lamblia TT(^3)</td>
<td>Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)</td>
<td>Human and animal fecal waste</td>
<td>zero</td>
<td></td>
</tr>
<tr>
<td>OC Glyphosate</td>
<td>0.7</td>
<td>Kidney problems; reproductive difficulties</td>
<td>Runoff from herbicide use</td>
<td>0.7</td>
</tr>
<tr>
<td>DBP Haloacetic acids (HAAS)</td>
<td>0.060</td>
<td>Increased risk of cancer</td>
<td>Byproduct of drinking water disinfection</td>
<td>n/a(^6)</td>
</tr>
<tr>
<td>OC Heptachlor</td>
<td>0.0004</td>
<td>Liver damage; increased risk of cancer</td>
<td>Residue of banned termicide</td>
<td>zero</td>
</tr>
<tr>
<td>OC Heptachlor epoxide</td>
<td>0.0002</td>
<td>Liver damage; increased risk of cancer</td>
<td>Breakdown of heptachlor</td>
<td>zero</td>
</tr>
<tr>
<td>M Heterotrophic plate count (HPC) TT(^3)</td>
<td>HPC has no health effects; it is an analytic method used to measure the variety of bacteria that are common in water. The lower the concentration of bacteria in drinking water, the better maintained the water system is.</td>
<td>HPC measures a range of bacteria that are naturally present in the environment</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>OC Hexachlorobenzene</td>
<td>0.001</td>
<td>Liver or kidney problems; reproductive difficulties; increased risk of cancer</td>
<td>Discharge from metal refineries and agricultural chemical factories</td>
<td>zero</td>
</tr>
<tr>
<td>OC Hexachlorocyclopentadiene</td>
<td>0.05</td>
<td>Kidney or stomach problems</td>
<td>Discharge from chemical factories</td>
<td>0.05</td>
</tr>
<tr>
<td>IOC Lead</td>
<td>TT(^7); Action Level = 0.015</td>
<td>Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities; Adults: Kidney problems; high blood pressure</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
<td>zero</td>
</tr>
<tr>
<td>M Legionella</td>
<td>TT(^3)</td>
<td>Legionnaire’s Disease, a type of pneumonia</td>
<td>Found naturally in water; multiplies in heating systems</td>
<td>zero</td>
</tr>
<tr>
<td>OC Lindane</td>
<td>0.0002</td>
<td>Liver or kidney problems</td>
<td>Runoff/leaching from insecticide used on cattle, lumber, gardens</td>
<td>0.0002</td>
</tr>
<tr>
<td>IOC Mercury (inorganic)</td>
<td>0.002</td>
<td>Kidney damage</td>
<td>Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands</td>
<td>0.002</td>
</tr>
<tr>
<td>OC Methoxychlor</td>
<td>0.04</td>
<td>Reproductive difficulties</td>
<td>Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock</td>
<td>0.04</td>
</tr>
</tbody>
</table>

LEGEND

- **D** Disinfectant
- **IOC** Inorganic Chemical
- **OC** Organic Chemical
- **DBP** Disinfection Byproduct
- **M** Microorganism
- **R** Radionuclides

www.epa.gov/safewater

SDW Hotline: 800-426-4791
<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL or TT(^1) (mg/L)(^2)</th>
<th>Potential health effects from exposure above the MCL</th>
<th>Common sources of contaminant in drinking water</th>
<th>Public Health Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate (measured as Nitrogen)</td>
<td>10</td>
<td>Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
<td>10</td>
</tr>
<tr>
<td>Nitrite (measured as Nitrogen)</td>
<td>1</td>
<td>Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
<td>1</td>
</tr>
<tr>
<td>Oxamyl (Vydate)</td>
<td>0.2</td>
<td>Slight nervous system effects</td>
<td>Runoff/leaching from insecticide used on apples, potatoes, and tomatoes</td>
<td>0.2</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>0.001</td>
<td>Liver or kidney problems; increased cancer risk</td>
<td>Discharge from wood-preserving factories</td>
<td>zero</td>
</tr>
<tr>
<td>Picolaram</td>
<td>0.5</td>
<td>Liver problems</td>
<td>Herbicide runoff</td>
<td>0.5</td>
</tr>
<tr>
<td>Polychlorinated biphenyls (PCBs)</td>
<td>0.0005</td>
<td>Skin changes; thymus gland problems; immune deficiencies; reproductive or nervous system difficulties; increased risk of cancer</td>
<td>Runoff from landfills; discharge of waste chemicals</td>
<td>zero</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radium 226 and Radium 228 (combined)</td>
<td>5 pCi/L</td>
<td>Increased risk of cancer</td>
<td>Erosion of natural deposits</td>
<td>zero</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.05</td>
<td>Hair or fingernail loss; numbness in fingers or toes; circulatory problems</td>
<td>Discharge from petroleum refineries; erosion of natural deposits; discharge from mines</td>
<td>0.05</td>
</tr>
<tr>
<td>Simazine</td>
<td>0.004</td>
<td>Problems with blood</td>
<td>Herbicide runoff</td>
<td>0.004</td>
</tr>
<tr>
<td>Styrene</td>
<td>0.1</td>
<td>Liver, kidney, or circulatory system problems</td>
<td>Discharge from rubber and plastic factories; leaching from landfills</td>
<td>0.1</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>0.005</td>
<td>Liver problems; increased risk of cancer</td>
<td>Discharge from factories and dry cleaners</td>
<td>zero</td>
</tr>
<tr>
<td>IOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>0.002</td>
<td>Hair loss; changes in blood; kidney, intestine, or liver problems</td>
<td>Leaching from ore-processing sites; discharge from electronics, glass, and drug factories</td>
<td>0.0005</td>
</tr>
<tr>
<td>Toluene</td>
<td>1</td>
<td>Nervous system, kidney, or liver problems</td>
<td>Discharge from petroleum factories</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliforms (including fecal coliform and E. coli)</td>
<td>5.0 percent(^4)</td>
<td>Not a health threat in itself; it is used to indicate whether other potentially harmful bacteria may be present(^5)</td>
<td>Coliforms are naturally present in the environment as well as feces; fecal coliforms and E. coli only come from human and animal fecal waste</td>
<td>zero</td>
</tr>
<tr>
<td>DBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHMs)</td>
<td>0.10</td>
<td>Liver, kidney or central nervous system problems; increased risk of cancer</td>
<td>Byproduct of drinking water disinfection</td>
<td>n/a(^6)</td>
</tr>
<tr>
<td>OC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxaphene</td>
<td>0.003</td>
<td>Kidney, liver, or thyroid problems; increased risk of cancer</td>
<td>Runoff/leaching from insecticide used on cotton and cattle</td>
<td>zero</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>0.05</td>
<td>Liver problems</td>
<td>Residue of banned herbicide</td>
<td>0.05</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>0.07</td>
<td>Changes in adrenal glands</td>
<td>Discharge from textile finishing factories</td>
<td>0.07</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>0.2</td>
<td>Liver, nervous system, or circulatory problems</td>
<td>Discharge from metal degreasing sites and other factories</td>
<td>0.20</td>
</tr>
</tbody>
</table>

LEGEND

D Disinfectant IOC Inorganic Chemical OC Organic Chemical DBP Disinfection Byproduct M Microorganism R Radionuclides

www.epa.gov/safewater

SDW Hotline: 800-426-4791
<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL or TT[^1] (mg/L)[2]</th>
<th>Potential health effects from exposure above the MCL</th>
<th>Common sources of contaminant in drinking water</th>
<th>Public Health Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC 1,1,2-Trichloroethane</td>
<td>0.005</td>
<td>Liver, kidney, or immune system problems</td>
<td>Discharge from industrial chemical factories</td>
<td>0.003</td>
</tr>
<tr>
<td>OC Trichloroethylene</td>
<td>0.005</td>
<td>Liver problems; increased risk of cancer</td>
<td>Discharge from metal degreasing sites and other factories</td>
<td>zero</td>
</tr>
<tr>
<td>M Turbidity</td>
<td>TT[^3]</td>
<td>Turbidity is a measure of the cloudiness of water. It is used to indicate water quality and filtration effectiveness (e.g., whether disease-causing organisms are present). Higher turbidity levels are often associated with higher levels of disease-causing microorganisms such as viruses, parasites and some bacteria. These organisms can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.</td>
<td>Soil runoff</td>
<td>n/a</td>
</tr>
<tr>
<td>R Uranium</td>
<td>30 µg/L as of 12/08/03</td>
<td>Increased risk of cancer, kidney toxicity</td>
<td>Erosion of natural deposits</td>
<td>zero</td>
</tr>
<tr>
<td>OC Vinyl chloride</td>
<td>0.002</td>
<td>Increased risk of cancer</td>
<td>Leaching from PVC pipes; discharge from plastic factories</td>
<td>zero</td>
</tr>
<tr>
<td>M Viruses (enteric)</td>
<td>TT[^3]</td>
<td>Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)</td>
<td>Human and animal fecal waste</td>
<td>zero</td>
</tr>
<tr>
<td>OC Xylenes (total)</td>
<td>10</td>
<td>Nervous system damage</td>
<td>Discharge from petroleum factories; discharge from chemical factories</td>
<td>10</td>
</tr>
</tbody>
</table>

NOTES

1. Definitions
 - Maximum Contaminant Level Goal (MCLG)—The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are enforceable public health goals.
 - Maximum Contaminant Level (MCL)—The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available technology and taking cost into consideration. MCLs are enforceable standards.
 - Maximum Residual Disinfectant Level Goal (MRDGL)—The level of a disinfecting agent below which there is no known or expected risk of disinfection by-products. MRDGLs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
 - Maximum Residual Disinfectant Level (MRL)—The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary to control microbial contaminants.
 - Treatment Technique (TT)—A required process intended to reduce the level of a contaminant in drinking water.

2. Units are in milligrams per liter (mg/L) unless otherwise noted. Milligrams per liter are equivalent to parts per million (ppm).

3. EPA’s surface water treatment rules require systems using surface water or ground water under the direct influence of surface water to (1) disinfect their water, and (2) filter their water or meet criteria for avoiding filtration so that the following contaminants are controlled at the following levels:
 - Cryptosporidium (as of 1/1/02) for systems serving >10,000 and 1/14/05 for systems serving >10,000 99 percent removal.
 - Giardia lamblia: 99.9 percent removal/inactivation
 - Viruses: 99.99 percent removal/inactivation
 - Legionella: No limit, but EPA believes that if Giardia and viruses are removed/inactivated, Legionella will also be controlled.

4. Turbidity: At no time can turbidity (cloudiness of water) go above 5 nephelometric turbidity units (NTU); systems that filter must ensure that the turbidity do no higher than 1 NTU (0.5 NTU for conventional or direct filtration) at least 95 percent of the daily samples in any month. As of January 1, 2002, for systems servicing >10,000, and January 14, 2005, for systems servicing <10,000, turbidity may never exceed 1 NTU, and must not exceed 0.3 NTU in 95 percent of daily samples in any month.

5. HPC: No more than 500 bacterial colonies per milliliter

6. ISO 1005: Surface water systems or (GWUDI) systems serving fewer than 10,000 people must comply with the applicable Long Term 1 Enhanced Surface Water Treatment Rule provisions (e.g. turbidity standards, individual filter monitoring, Cryptosporidium removal requirements, updated watershed control requirements for unfiltered systems).

7. Filter Backwash Recycling: The Filter Backwash Recycling Rule requires systems that recycle to return specific recycle flows through all processes of the system’s existing conventional or direct filtration system or at an alternate location approved by the state.

8. No more than 50 percent total coliform-positive in a month. (For water systems that collect fewer than 40 routine samples per month, no more than one sample can be total coliform-positive per month.) Every sample that has total coliform must be analyzed for either fecal coliforms or E. coli. If two consecutive TC-positive samples, and one is also positive for E. coli fecal coliforms, system has an acute MCL violation.

9. Fecal coliform and E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Disease-causing microbes (pathogens) in these waste can cause diarrhea, cramps, nausea, headache, or other symptoms. These pathogens may pose a special health risk for infants, young children, and people with severely compromised immune systems.

10. Although there is no collective MCL for this contaminant group, there are individual MCLGs for some of the individual contaminants:
 - Haloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg/L)
 - Trihalomethanes: bromodichloromethane (zero); bromoform (zero); dibromochloromethane (0.06 mg/L)

11. Lead and copper are regulated by a Treatment Technique that requires systems to control the corrosiveness of their water. If more than 10 percent of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0.015 mg/L.

12. Each water must certify, in writing, to the state (using third-party or manufacturers certification) that when it uses acrylamide and/or epichlorohydrin to treat water, the combination (or product) of dose and monomer level does not exceed the levels specified, as follows: Acrylamide = 0.05 percent dosed at 1 mg/L (or equivalent); Epichlorohydrin = 0.01 percent dosed at 20 mg/L (or equivalent).

[2] Disinfectant
[3] Inorganic Chemical
[5] DBP
[6] Disinfection Byproduct
[7] M
[8] Microorganism
[9] R
[10] Radionuclides

SDW Hotline: 800-426-4791
Appendix B: References

US EPA Publications

25 Years of the Safe Drinking Water Act: History & Trends
EPA 816-R-99-007
December 1999

Community Water Systems Survey 2000, Volume I
EPA 815-R-02-0054
December 2002

Drinking Water Costs and Federal Funding
EPA 810-F-99-014
December 1999

Drinking Water from Household Wells
EPA 816-K-02-003
January 2002

Drinking Water Priority Rulemaking: Microbial and Disinfection Byproduct Rules
EPA 816-F-01-012
June 2001

Drinking Water Treatment
EPA 810-F-99-013
December 1999

Factoids: Drinking Water and Ground Water Statistics for 2001
EPA 815-K-02-004
May 2002

Factoids: Drinking Water and Ground Water Statistics for 2002
EPA 816-K-03-001
January 2003

Fact Sheet: 1999 Drinking Water Infrastructure Needs Survey
EPA 816-F-01-001
February 2001

“Investing in America’s Water Infrastructure” Keynote Address by G. Tracy Mehan III to the Schwab Capital Markets’ Global Water Conference April 2003

Protect Your Drinking Water
EPA 816-F-02-012
September 2002

Public Access to Information & Public Involvement
EPA 810-F-99-021
December 1999

Report to Congress: EPA Studies on Sensitive Subpopulations and Drinking Water Contaminants
EPA 815-R-00-015
December 2000

Safe Drinking Water Act-Protecting America’s Public Health
EPA 816-H-02-003
January 2002

EPA 816-H-01-003
August 2001

The Clean Water and Drinking Water Infrastructure Gap Analysis
EPA 816-F-02-017
September 2002

The Drinking Water State Revolving Fund: Protecting the Public Through Drinking Water Infrastructure Improvements
EPA 819-F-00-028
November 2001

Understanding the Safe Drinking Water Act
EPA 810-F-99-008
December 1999

Using Water Wisely in the Home
EPA 800-F-00-001
June 2001

Publications From Outside Sources

Congressional Budget Office. Future Investment in Drinking Water & Wastewater Infrastructure
November 2002

www.epa.gov/safewater SDW Hotline: 800-426-4791
Appendix C: Sources of Additional Information

American Water Works Association
Public Affairs Department
6666 West Quincy Avenue
Denver, CO 80235
Phone (303) 794-7711
www.awwa.org

Association of Metropolitan Water Agencies
1717 K Street NW
Suite 1102
Washington, DC 20036
Phone (202) 331-2820
www.amwa-water.org

Association of State Drinking Water Administrators
1120 Connecticut Avenue NW
Suite 1060
Washington, DC 20036
Phone (202) 293-7655
www.asdwa.org

Clean Water Action
4455 Connecticut Avenue NW Suite A300
Washington, DC 20008
Phone (202) 895-0420
www.cleanwater.org

Consumer Federation of America
1424 16th Street NW
Suite 604
Washington, DC 20036
Phone (202) 387-6121
www.consumerfed.org

The Groundwater Foundation
P.O. Box 22558
Lincoln, NE 68542
Phone (800) 858-4844
www.groundwater.org

The Ground Water Protection Council
13308 N. Mac Arthur
OKC, OK 73142
Phone (405) 516-4972
www.gwpc.org

International Bottled Water Association
1700 Diagonal Road
Suite 650
Alexandria, VA 22314
Phone (703) 683-5213
Information Hotline 1-800-WATER-11
ibwainfo@bottledwater.org

National Association of Regulatory Utility Commissioners
Phone (202) 898-2200
www.naruc.org

National Association of Water Companies
1725 K Street NW
Suite 1212
Washington, DC 20006
Phone (202) 833-8383
www.nawc.org

National Drinking Water Clearinghouse
West Virginia University
P.O. Box 6064
Morgantown, WV 26506
Phone (800) 624-8301
www.ndwc.wvu.edu

National Rural Water Association
2915 South 13th Street
Duncan, OK 73533
Phone (580) 252-0629
www.nrwa.org

Natural Resources Defense Council
40 West 20th Street
New York, NY 10011
Phone (212) 727-2700
www.nrdc.org

NSF International
P.O. Box 130140
789 North Dixboro Road
Ann Arbor, MI 48113
Phone (800) NSF-MARK
www.nsf.org

www.epa.gov/safewater

SDW Hotline: 800-426-4791
Rural Community Assistance Program
1522 K Street NW
Suite 400
Washington, DC 20005
Phone (202) 408-1273
www.rcap.org

Underwriters Laboratories
Corporate Headquarters
333 Pfingsten Road
Northbrook, IL 60062-2096
Phone (877) 272-8800
www.ul.com

Water Quality Association
4151 Naperville Road
Lisle, IL 60532
Phone (630) 505-0160
www.wqa.org

U.S. Environmental Protection Agency Water Resource Center
1200 Pennsylvania Avenue NW
RC-4100
Washington, DC 20460
SDWA Hotline (800) 426-4791
www.epa.gov/safewater

Water Systems Council
National Programs Office
101 30th Street NW
Suite 500
Washington, D.C. 20007
Phone: (202) 625-4387
Wellcare Hotline 888-395-1033
www.watersystems.council.org

EPA Region 1
(CT, ME, MA, NH, RI, VT)
Phone (617) 918-1111
Phone (617) 918-1614
(UIC issues)

EPA Region 2
(NJ, NY, PR, VI)
Phone (212) 637-5000
Phone (212) 637-4232
(UIC issues)

EPA Region 3
(DE, DC, MD, PA, VA, WV)
Phone (215) 814-5700
Phone (215) 814-5445
(UIC issues)

EPA Region 4
(AL, FL, GA, KY, MS, NC, SC, TN)
Phone (404) 562-9900
Phone (404) 562-9452
(UIC issues)

EPA Region 5
(IL, IN, MI, MN, OH, WI)
Phone (312) 886-2000
Phone (312) 886-1492
(UIC issues)

EPA Region 6
(AR, LA, NM, OK, TX)
Phone (214) 665-6444
Phone (214) 665-7183
(UIC issues)

EPA Region 7
(IA, KS, MO, NE)
Phone (913) 551-7003
Phone (913) 551-7030
(UIC issues)

EPA Region 8
(CO, MT, ND, SD, UT, WY)
Phone (303) 312-6312
Phone (303) 312-6242
(UIC issues)

EPA Region 9
(AZ, CA, HI, NW, AS GU)
Phone (415) 947-8000
Phone (415) 947-1834
(UIC issues)

EPA Region 10
(AK, ID, OR, WA)
Phone (206) 553-1200
Phone (206) 553-1901
(UIC issues)
Appendix D: Glossary

Aquifer
A natural underground layer, often of sand or gravel, that contains water

Coliform
A group of related bacteria whose presence in drinking water may indicate contamination by disease-causing microorganisms

Community Water System (CWS)
A water system that supplies drinking water to 25 people or more year-round in their residences

Contaminant
Anything found in water (including microorganisms, radionuclides, chemicals, minerals, etc.) which may be harmful to human health

Cryptosporidium
Microorganism found commonly in lakes and rivers which is highly resistant to disinfection.

Disinfectant
A chemical (commonly chlorine, chloramines, or ozone) or physical process (e.g., ultraviolet light) that kills microorganisms such as viruses, bacteria, and protozoa

Distribution System
A network of pipes leading from a treatment plant to customers’ plumbing systems

Ground Water
Water that is pumped and treated from an aquifer

Inorganic Contaminants
Mineral-based compounds such as metals, nitrates, and asbestos; naturally occurring in some water, but can also enter water through human activities

Maximum Contaminant Level
The highest level of a contaminant that EPA allows in drinking water (legally enforceable standard)

Maximum Contaminant Level Goal
The level of a contaminant at which there would be no risk to human health (not a legally enforceable standard)

Microorganisms
Tiny living organisms that can be seen only under a microscope; some can cause acute health problems when consumed in drinking water

Non-Transient Non-Community Water System
A non-community water system that serves the same people more than six months of the year, but not year-round

Organic Contaminants
Carbon-based chemicals, such as solvents and pesticides, which enter water through cropland runoff or discharge from factories

Pathogen
Disease-causing organism

Public Water System (PWS)
A water system which supplies drinking water to at least 25 people, at least 60 days each year
Sensitive Subpopulation
People who may be more vulnerable to drinking water contamination, such as infants, children, some elderly, and people with severely compromised immune systems

Septic System
Used to treat sanitary waste; can be a significant threat to water quality due to leaks or runoff

Source Water
Water in its natural state, prior to any treatment for drinking (i.e., lakes, streams, ground water)

Surface Water
Water that is pumped and treated from sources open to the atmosphere, such as rivers, lakes, and reservoirs

Transient Non-Community Water System
A non-community water system that serves the public but not the same individuals for more than six months

Violation
Failure to meet any state or federal drinking water regulation

Vulnerability Assessment
An evaluation of drinking water source quality and its vulnerability to contamination by pathogens and toxic chemicals

Watershed
The land area from which water drains into a stream, river, or reservoir

Well
A bored, drilled or driven shaft whose depth is greater than the largest surface dimension, a dug hole whose depth is greater than the largest surface dimension, an improved sinkhole, or a subsurface fluid distribution system